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ABSTRACT 

A well known application of Ramsey 's  Theorem to Banach Space Theory 

is the notion of a spreading model (ei) of a normalized basic sequence 

(xi) in a Banach space X.  We show. how to generalize the construc- 

tion to define a new creature (ei), which we call an asymptotic  model 

of X. Every spreading model of X is an asymptotic model of X and in 

most settings, such as if X is reflexive, every normalized block basis of 

an asymptotic  model is itself an asyinptotic model. We also show how 

to use the Hindman-Milliken T h e o r e m - - a  strengthened fornl of Ram- 

sey's Theorenl-- to generate asymptotic  models with a stronger form of 

convergence. 

1. I n t r o d u c t i o n  

Ramsey Theory, and especially Ramsey's Theorem, is a very powerful tool in 

infinitary combinatorics and has many interesting (and sometimes unexpected) 

applications in various fields of Mathematics. Generally speaking, theorems in 

Ramsey Theory are of the type that a function into a finite set can be restricted 
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to some sort of infinite substructure, on which it is constant. In applications 

to analysis we successively apply Ramsey's  Theorem to certain ~-nets to obtain 

infinite substructures on which certain Lipschitz flmctions are nearly constant in 

an asymptotic  sense (cf., e.g., [Od80] or [HKO, Par t  III]). 

A well known application of Ramsey's  Theorem ([Ra29, Theorem A]) to 

Banach Space Theory is due to A. Bmnel  and L. Sucheston (el. [BS73]). Roughly 

speaking, it says that  every normalized basic sequence in a Banach space has 

a subsequence which is "asymptotically" subsymmetric, ultimately yielding a 

spreading model. 

There are two main directions to generalize Ramsey's  Theorem. One is in 

terms of partitions and another one leads to the so-called Ramsey property. 

(Some results concerning the symmetries between the combination of these two 

directions can be found in [Ha98].) Both directions are already used in Banach 

Space Theory. For example, the fact that  Borel sets have the Ramsey property 

is used in Farahat 's  proof of Rosenthal's Theorem, which says that  a normalized 

sequence has a subsequence which is either equivalent to the unit vector basis 

of ~1 or  is weakly Cauchy. Further, a combination of both directions is used by 

W. T. Gowers in the proof of his famous Dichotomy Theorem. 

In the sequel, we prove a generalized version of the Brunel-Sueheston Theorem 

by using Ramsey's  Theorem. We apply this to basic arrays, namely certain se- 

quences of basic sequences in X. Also, we show how a generalization of Ramsey's  

Theorem, the Hindman-Milliken Theorem, can be used to construct asymptotic  

models with a stronger form of convergence. 

The object we obtain, a basis (ei)ie~ for some infnite dimensional Banach 

space E, we call an asymptotic model of X. Asymptotic models include not only 

all spreading models of X, and even in many cases all normalized block bases of 

such, but. more general sequences ms well. If the sequences in the generating basic 

array are all block bases of a fixed basis or are all weakly null, then the notion 

lies somewhere between that  of spreading models and asymptotic structure (see 

[MMT95]), although it is closer in flavor to the theory of spreading models. The 

construction we use to get an asymptotic model has been used in the past by 

several authors to study spreading models and the behavior of sequences over 

X (e.g., [Ro831, [Ma83] and [AOST]). In particular in [t/o83] the concept of an 

oc-type over a Banach space is introduced and this actually contains within it the 

notion of an asymptotic model. But our more restricted viewpoint in this paper 

is the first study of what we have chosen to call "asymptotic models" themselves. 

In Section 3 we recall the Hindman Milliken Theorem. In Section 4 we define 
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and cons t ruc t  a sy lnp to t i c  models.  In addi t ion ,  we make a number  of observat ions  

abou t  a symp to t i c  models  and  thei r  re la t ion wi th  spreading  models  and  asymp-  

to t ic  s t ruc ture .  Sect ion 5 generalizes some resul ts  of [OS982] to the  se t t ing  of 

a sympto t i c  models.  Sect ion 6 concerns some s t ronger  versions one might, hope 

to have but ,  as we show, one ca lmot  achieve in general .  In this  sect ion we also 

raise some open problems.  

For the reader ' s  convenience, we recall  some set theore t ic  t e rmino logy  we will 

use fl 'equently. A na tu ra l  number  ~ is considered as the  set of all  n a tu r a l  numbers  

less than  ~. in par t icu la r ,  0 = 0. Let  co = {0, 1, 2 . . . .  } denote  the set of all n a tu r a l  

numbers .  By the way, we always s t a r t  count ing by 0. Some more set theoret ic  

te r ln inology will be in t roduced  in the  following section. 

The  no ta t ion  concerning sequence spaces is s t a n d a r d  and can be  found in 

t ex tbooks  like [Di84], [Gu92] and [LT77]. However, for the  sake of the  non- 

exper t ,  we recall  sonic definit ions.  

A sequence (.ri)iE~., in a nornled space is n o r m a l i z e d  if for all i E co, II:r~ll -- 1, 

and  it is s e m i n o r m a l i z e d  if there  exists  an M wi th  0 < M < oo such t.hat for 

all i E co, 1 / M  <_ II,r~ll _< ~I. If (:r~)~E~, is a sequence of non-zero vectors  in a 

Banach space X,  then  (:ri)iE~., is b a s i c  iff there  exists C < oo so tha t  for all 

~ < m. and  (a i ) ie  .... C_ R, II E~e,, ai'Fill <~ CII E~e,~,~.~'~ll. The smal les t  such C 

is called the  b a s i s  c o n s t a n t  of (:ci)~s~ and  ( x i ) i ~  is then  called C - b a s i c .  The  

basic sequence (.ri)iE~ is m o n o t o n e  b a s i c  if it  is 1-basic, and  it is b i m o n o t o n e  

if it  is monotone  and the ta i l  p ro jec t ions  are lnonotone  as well (i.e., I - P ,  has 

no rm one if P~ is the  i~th ini t ia l  projec t ion) .  If (.Ci)iE~ is basic, then  every x in 

the  closed l inear  span  of (:r.~)ie~ can be uni(Nely expressed as ~ i e ~  a~x.i for some 

(ai)ie~ _C R. Basic sequences (Xi)iE,~ and (Yi)iEo., are C - e q u i v a l e n t  if there  exist  

cons tan ts  A and B wi th  A B  <_ C so tha t  for all  ~, E co and scalars  (ai)iE,~ 

For a basic  sequence (x.i)iE~.. and  scalars  (bl)tE~, a sequence of non-zero vectors  

(N)JE~ of the form 
])k+l --1 

yj = ~ bl:rl, 
l=p~,, 

where P0 < Pl < " ' "  < Pk < " ' "  is an increasing sequence of na tu r a l  numbers ,  is 

cal led a b l o c k  b a s i c  s e q u e n c e  or jus t  a b l o c k  b a s i s .  

A basic  sequence ( : r i ) ~  is called b o u n d e d l y  c o m p l e t e  if, for every sequence 

of scalars  (ai)iE~ such t ha t  sup~ II ~ i ~ ,  a~:r~ll < oc, the  s e r i e s  ~iE~,a ix i  con- 
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verges. A basic sequence (x i ) ie~  is u n c o n d i t i o n a l  if for any sequence (a i ) ie~  of 

scalars  aml  for any p e r n m t a t i o n  7r of w, i.e., for any bi ject ion 7r: w --+ w, ~ i e ~ ,  a#r.i 

converges if and  only if ~ . i ~  a~ (~) x~ (i) converges. A non-zero sequence of vectors  

(x i ) ie~ is unconditional basic iff there  exists C < cc so t ha t  for all  n C co, 

ei = +1 and (ai)ie~, C R, ]l Y~ie ,  5i(ti'rill ~ CII ~-~iE,~ (tixill. The smal les t  such C 

is the  unconditional basis constant of (.vi). 
A normal ized  basic sequence (xi)ie~, is C - s u b s y m m e t r i c  if (xi)ie~, is C-  

equivalent  to each of its subsequences (notice tha t  we do not  require  it to be 

uncondi t iona l  which differs fl 'om the t e rmino logy  of [LT77]). 

For a set of vectors A, (A) denotes  the l inear span  of A and [A] denotes  the  

c l o s u r e  o f  t h e  l i n e a r  s p a n  of A. Note  tha t  if the  normal ized  basic  sequences 

(x i ) ic~  and (Yi)/e~ are C-equivalent ,  then the spaces [(x/)ie~] and [(Yi)ie~] are 

C- isomorphic .  

The  d u a l  s p a c e  of a Banach space X is deno ted  by X*. 

Suppose  t ha t  (R'i)iS w is a basic sequence. For each x* in [(:ri)ieaJ]* and each 

n E co, let Ilx*]l(,~) be the  no rm of the  res t r ic t ion  of x* to [{xi : i > 7~}]. Then  

(Xi ) ie  w is s h r i n k i n g  if for each x* E [(;ri)iEce]*, l im~,_~  II:r*lI<.l  = 0. 

If  Y is a normed  l inear space, B y  denotes  the  c l o s e d  u n i t  b a l l  of Y and 

S y  is the  u n i t  s p h e r e .  In  the  sequel, X will always denote  a separable  infinite 

d imensional  real  Banach space. 

2. Special partitions 

Let w + 1 :=  co U {co}, so if 7! E w + 1, then  ~1 is e i ther  a na tu ra l  number  or ~! = co. 

If  x is a set, we wri te  Ix[ for the  ca rd ina l i ty  of x. \~% will use co also as a ca rd ina l  

number ,  namely  co = ]col. If  x is a set and  i l E cJ + 1, then  

: =  c , r :  Iyl = ,;} a n d  [.r] : - -  c ,, .: < 

If  a , b  C_ co, we wri te  a < b in place of "for all 7~ E o and m E b, n < m".  Note  

tha t  a < b implies a E [co] <% 

A partition P of set S is a set of non-empty,  pairwise disjoint  subsets  of S 

such t ha t  ~J P = S. For a pa r t i t i on  P ,  the sets b E P are called the  blocks of P .  

In  the  following we consider "special" pa r t i t ions  of subsets  of co. 

If  P is a part . i t ion of some subset  of co, then  P is called a special partition, 
if for all blocks a, b E P we have ei ther  a < b, or a = b, or a > b. 

Notice t ha t  if P is a special  pa r t i t i on  wi th  infini tely many  blocks, then  all of 

i ts blocks are finite. 
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For i 1 C w + 1, let (co)'J denote the set of all special partitions of subsets of 

c~ such that  IPI = '~t. In particular, (co)~ is the set, of all special partit ions with 

infinitely many blocks. 

Let P1, P2 be two special partitions. We say that  P1 is c o a r s e r  than P2, or 

that  P'2 is f iner  than Pt, and write Pl E_ P2, if each block of P1 is the union of 

blocks of P2. 

For a special parti t ion P and ~1 E co + 1 let 

<P>" := {Q:  Q _ P A  1O[ = I/}. 

If P is a special partition and b C P,  then rain(b) :-- ~ b denotes the lninimmn 

of the set b. If we order the blocks of P by their milfilnum, then P(n)  denotes 

the ~th block with respect, t.o this ordering. 

If Pt,  P'2 are two special partitions, then we write P1 E* /2, 2 if there is an n C 

such that  

(P, \ {P,( i ) :  e . } )  _ P2. 

In other words, P1 E* P2 if all but finitely many blocks of P1 are rations of blocks 

of P2. 

FACT 1: If Po*Z_ P~*~_ P2*~_ ...*~_ Pi*~ . . -  where Pi E <w) ~ (for each i E aJ), 

then there is a special partition P E (co)~ such that  for each i E ~z, P _E* Pi. 

(The proof is sinfilar to the proof of Fact2.3 of [Ha98].) 

3.  T h e  H i n d m a n - M i l l i k e n  T h e o r e m  

First, we recall tile well-known Hindman Theorem, and then we give Milliken's 

generalization of Hindman's  Theorem. 

If A E [co]<~", then we write ~ A for ~-~acA a, where we define ~ 0 := 0. 

Ill [Hi74], N. Hindman proved the following. 

THEOREM 3.1 (Himhnan's Theorenl): I f  m is a posi t ive  nmm'a l  number  m~d 

f :  co --~ m is ~ f imction,  then there exist  r C m and x ~ [co]~ such that  whenever  

A is I ( E  A) = 1.. 

R. Graham and B. Rothschild noted that  Hindman's  Theorem can be formu- 

lated in terms of finite sets and their unions instead of natural  mmfl)ers and their 

sums. This yMds the tbllowing. 

THEOREM 3.2 (Hindman's Theorem (Set \:ersion)): / f  m is a posi t ive  natm'al 

reindeer, I C [c0] ~ mul .f: [I]<~' -* m is a f imction,  then there exist r ~ m and 
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an infinite set H C_ [i]<~o s~wh that o N b = 0 for all distinct sets a, b E H .  and 

whenever A E [H] <~' is non-eml)O: we hare f([.J A) = ,'. 

Using Hindman ' s  Theorem as a s trong pigeonhole 1)rinciple, K. Milliken proved 

a s t rengthened version of 1Ramsey's Theorem,  which we will call the H indman  

Milliken Theo rem (cf. [Mi75, Theorem2.2]) .  The  Hindman  Milliken Theorem in 

t e rms  of unions can be s ta ted  as tbllows: 

THEOREM 3.3 (Hindman Millikcn Theorem (Set Version)): Let m. n be 1)ositive 

nat t , ra l  nmnbers ,  Q E (co)~o and f:  (Q)" + m a fimction. Then there is an 

P E (Q)~O such that .f is constant on (P}".  

As consequences of the H indman  Milliken Theorem one gets Ramsey ' s  

Theorem (Theorem A of [1Ra29]) as well as H indman ' s  Theorem (of. [Mi75]). 

4.  A s y m p t o t i c  m o d e l s  

First  we recall the notion of a spreading model.  If  (:ri)ie~ is a normalized basic 

sequence in a Banach  space X and ~, .1- 0 (3 sequence of posit ive real munbers  

which tends to 0), then one can find a subsequence (!Ji)iEw of (;ri)iE~., such tha t  

tile fbllowing holds: For any positive ,~ E w, any sequence (ak)t.En E [--1, 1]" and 

any na tura l  numbers  n _< i0 < . ."  < i ,_1 and .n _< j0 < " '"  < j , - ,  we have 

This  is proved by using Ramse3?s Theorem iterat ively for a filfite ~ . -net  in 

the unit  ball of ~'~ (~. depends upon g,,) to stabilize, up to ~,,. the fimetions 

f ( io  . . . . .  i , ,-1) ---- II E , e , ,  O+*+ll over a subsequence (Yi)iE+. of (Xi)iew tor each 

(ai)ie,, in the a,,-net. Thus,  one obtains  a limit, II ~+e,,o~:+}l, for each finite 

sequence (ai)iE.n of scalars. The  sequence (t~i)ie~ is called a s p r e a d i n g  m o d e l  of 

(Yi)iE~z; (('i)iEco is a normalized 1-subsynmmtric  basis for E,  the closed linear span 

of the ~i's, and E is called a s p r e a d i n g  m o d e l  of X generated by (('i)iEw. Hence, 

for any natm'a l  mmfl)ers J0 < " '"  < J.,,-, we have I[ Y~ie,, oieill = II ~'~iE,, (t'ieji I]" 

If  (Yi)iEw is weakly null, (~i)iE~o is suppression-1 uncondit ionah II ~ i e v  aie.ilI <_ 

I] ~-~iE~ o.ieiil for all F _C co and each sequence (ai)ie~. of scalars. These facts can 

be found in [BLS4] or paSO]. 

Before presenting our extension we set. some notat ion.  
( id7 \ ~1 W e  shall call ~. i ),,ie~o a K - b a s i c  a r r a y  in X if', for all n E co, (~ i ) i e~  is 

a K-bas ic  normalized sequence in X and, moreover,  if for all m E co and all 
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• rJ integers m _< io < - . .  < t,,,-1, every sequence (, i j ) J e , ,  is K-basic.  Furthernlore,  

( r  '~ ~ is a b a s i c  a r r a y  in X if it is a K-basic  array for some K < oc. ' i ]m,Ew 
If  X has a basis (:ri)i¢~ then (.r}'),~,ie~, is a b l o c k  b a s i c  a r r a y  in X (with 

[ r n "~ respect to (,ri)ie~,) if, in addition, each row t. i )iE~ is a block basis of (:ri)iE~, 

and all sequences (X~j)jE.~ as described above are also block bases of (zi)iE~,. 

In what  we present, the only impor tant  par t  of the array is the upper tr iangular 

part:  {:r I' : .. E ~' and i _> .n}. The lower tr iangular part  can be ignored or omit ted  

and we shall often do so. 

PROPOSITION 4.1: Le t  (.cl*),,,iE~o be a K-bas i c  array  in s o m e  Banach  sl)ace X .  

Then  given z,, $ O. there exists a subsecflwnce (l% ),E~o o f  w so that  for all n E w. 

(bi)iE, E [--1, 1]", ~ _< i0 < " "  < i,,-1 and  ~ <_ (o < "'" < (, ,-1.  

P r o o k  As in the case of spreading models, this follows easily from Ramsey ' s  

Theorem and the s tandard  diagonalization argument.  One e,,/2-stabilizes 

f ( i o  . . . . .  i , , - l )  :=  II F.~,, b~.d0 II over all subsequences of length n on some sub- 

sequence of co tor each of finitely many (bj) je, ,  E [ -1 ,  1]" out of some a,,-net in 

Be£.  1 

If  the conclusion of the proposit ion holds tbr tYi ),,,iE~o, w h e r e . ,  = .~.~,~, then 

the i terated limit, lilnio_+ ~ II 3 "'" ~-~jE, bj!lij [], defines a nornl on Coo, 

the linear space of finitely supported real sequences on co. We let t3 be the 

completion of c'00 under this nornl. The refit vector basis (ei)~E~, thus becomes 

a K-basis  for E.  We call ( e i ) i E  w o r  E all a s y m p t o t i c  m o d e l  of X generated by 

(u~'),,.~.. 
, . = r~' is If  (a:}'), ie~,, is a basic array and i0 < il < . . .  then (:q}~),~,je~, where .q}' , ,~, 

called a s u b a r r a y  of (:r} *).,ie~. Proposition4.1 says tha t  every basic array adnfits 

a subarray which generates an asymptot ic  model. Also, clearly, if (91') , , ie~ 

generates (ei)ie~,, then every subarray of (.~]~'),,,iE~ generates (ei) as well. 

We shall have occasion to use the tollowing simple lemma. 

LEMMA 4.2: For each n E co let (:r~)ie~. be a normal i zed  sequence in a Banach  

space X .  I f  e i ther  

(a) each (a:}')ie~ is weak ly  null or 

(b) each (:r}')ie~ is a block basis of  s o m e  basic sequence ( . I : i ) iE w in X.  

then the array  (:r}'),,,ie~., admi t s  a basic subarrav (:q~'),,.ie~. I f  (a), then given 

e > 0. (YI'),,,iE~. can be &osen to be a 1 + e-basic arr¢v. I f  (b), (y~'),,,is~ can be 

&osen to be a b l o &  basic ar ray  o f  (.ri)ie~.,. 
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Proof: To prove (b) we need just  choose the subarray ( y n ) n , i E c  o SO tha t  for all 

n E w, j E n, i E n + 1, max(supp(y~_l )  ) < min(supp(y~)) where, if y = y~ aixi,  

then supp(y) = {i : ai ¢ 0}. (a) is proved by a slight generalization of the 

proof  of the well known fact tha t  a normalized weakly null sequence admits  a 

1 + e-basic subsequence. One takes en $ 0 rapidly and then chooses the eolunm 
i (Y,~)ie~ so tha t  If(Yin)l < en for i E n + 1 and each f ill a finite 1 + gn-nonning 

set of flmctionals of B(y~ :i,jEn}* 1 

We will call a basic array (x~) whose rows, (x~)i<,~, are all weakly null a 

weakly null basic array. 

If  (ei)ie~ is a spreading model of X generated by the basic sequence (xi)ie,~, 
, ? ~ ,  then clearly (ei)ic~ is an asymptot ic  model of X as well (generated by (x i ),,~e~ 

where z~ ~ = xi for all n, i E cv). A block basis of a spreading model need not be 

a spreading model; however, this is not, usually the case for asymptot ic  models. 

But  first we introduce some new notat ion and a new stronger way of obtaining 

asymptot ic  models. 

A basic array is a s t r o n g  K - b a s i c  a r r a y  if, in addit ion to the de fn ing  condi- 

tions of a K-basic  array, for all integers m _< i0 < il < .-" < i r a - l ,  every sequence 

of non-zero vectors (Yj)jEm is K-basic  whenever yj E (xJ : ij _< s < i j+l) .  Note 

tha t  the proof  of Lemma 4.2 actually yields tha t  one can choose the subarray 

(y~),~,ie,~ to be strong basic. 
X n Let ( i )n,is~ be a strong basic array. Given m E aJ, a finite set of positive 

integers F = (i0,i l  . . . . .  i,~_1) with i0 < . . .  < i n - i ,  and a (possibly infinite) 

sequence a = (a0, al  . . . .  ) of scalars of length at least n with ai 7 £ 0 for some 

i E n, we define 
~-'~- jEn a "2C m • J i j  

x"(F. a) := II E.j~,~-j.~:f~II 

THEOREM 4.3: Let X be a Banach space and let (;r}z),~,iE~ be a strong K-basic 

array in X for some K < oc. For i E a~ and each non-empty  finite set of  integers 

F = {io . . . . .  i,~_1} with io < . . .  < i,~,-1, let a~ be a (possibly infinite) sequence 

of scalars of  length a t / eas t  n and not  identically zero in the first ~ coordinates 

and let e,, $ O. Then there exists a special partit ion P = {P(k)  : k E c~} E (x)~ 

such that the following holds: For all positive n E w and (bi)iET~ E [ -1 ,  1] *~ and 

s , t  E (P)'~ with min(s(0)) ,min(t(0))_> ,~ we have 

I E E bi.r (,~(~),as(i)) - bi:ri(t(i), i at(./)) < eT~. 
f e n  f e n  

Proof: The theorem follows fl'om the Hindman Milliken Theorem the same 

way tha t  one obtains a subsequence of a given basic sequence (.vi)iE~ yielding a 
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spreading model via Ramsey's Theorem: Given finitely many sequences (bi)iE,, E 
[-1, 1]', a &~-net in Beg  (the unit ball of C~) for an appropriate (~,~, and a special 

partitiou P E (w) ~°, then one can find O E (p)~o so that for all t, r E (O)'~ we 

have 

(*) Zb ia: i ( t ( i ) ,a~( i ) )  - E b i z i ( r ( i ) a  i ) , ,-(.i) < ~,. 
'iEn iCn 

One then uses standard approximation and diagonalization arguments to con- 

clude the proof (see Fact 1). 

Indeed, given (bi)iE,~ and a special partition P E @)% we partition the interval 

[ - m  'hi into say .m, disjoint subintervals (Ii)iEm, each of length tess than 5,~. Given 

t E ( p ) n ,  we let 

f ( t )  := j if and only if E b,a#(t(i),ai(i) ) E Ij. 
iGn 

An application of the Hindman Milliken Theorem yields Q E (P)~ so that (.) 

holds for all t, r E (Q)".  We repeat this for each (bi)iE,~. For an arbitrary 

(ci)iE,~ E [-1, 1] ~ one chooses (bi)iE, fi'om this 5.~-net with Ici, - bil < 5, (for all 

i E n). Hence, for t, r E  (Q)~", 

Zci : r i ( t ( i ) ,a~( i ) )  - Z c i z i ( r ( i ) , a  i,,(i)) = 
iET~ i E n  

• a ~ b i *  (t('t) ,at(i))  Zc ' ia : i ( t ( i ) ' a i ' i )  ) - Zb ia : i ( t ( * ) '  t(i))+ Z i • i 
i E 'n i E n i E ~ 

• . ' i r i  i ) , - ~-~ci.r~(r(,),a',.(i)) - Z b i a :  ( ( ) ,a , , ( i ) )  + Z b ia : i ( , ' ( i )  a i , ,,(i) 

which, by the triangle inequality, is 

<- E Ici - billl'ri (t( i)" a~(i))ll 
i E n  

+ Z b i . c i ( t ( i ) ,  i at(/)) Z b .  : i . ,  i . 
- ( , ( , ) , a  t t) 

iE~ iE~ 

+ - I I I .  ai.(i))II 
i E ~  

1)rovided d,~ < c , / (2~  + 1). I 
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Remark 4.4: One obtains as a limit a norm on Coo (tile linear space of finitely 

suppor ted  sequences of scalars), II Eie~. bieill, where (ei)iE,~ is the unit vector 

basis for coo. 

We say tha t  (ei)ie~ is a s t r o n g  a s y m p t o t i c  m o d e l  generated by the s trong 

basic array (:v}~),,ie~, the special part i t ion P E (cv) ~ and the set of sequences 

{a~. : i E c~,. F E [w]<~}. In this case, it, is also easy to see tha t  (e~)ie~, is an 

asymptot ic  model of X generated by the basic array (Y~)~,iE~,. where 

~,~ = .r" (P( i )  a" , t,(i)J for tt, i E ~ , .  

Thus. asymptot ic  models can be generated by a stronger type of convergence. 

\Ve do not have an application for this. However, it could prove useful in at tacking 

some of the problems in Section 6: those of the type where the assmnpt ion is 

that  every asymptot ic  model is of a certain type. 

We note several special cases of s trong asymptot ic  models (ei)ie,~ generated 

by t. i ),,,is~,, P E (w) ~ and {a~,:  i • w, F • [a3]<~}. 

(4.4.1) Let (.ri)iE~, be a normalized basic sequence in X and set x} ~ = xi for 

all ,,, i • a~,. Let a),~ = (1, 0, 0 . . . .  ) t o r  all i • ~z and F • [w] <~. Then (e~)~e~ is a 

spreading model  of a subsequence of (~l~i)ie~. 
.?] (4.4.2) Let .~i = .ri for all n, i • a~, where again (xi)ie~ is a fixed normalized 

basic sequence in X.  For i • c~ let a i be a not identically zero sequence of scalars 

and set a~- = a i for each F • [w] <~'. (The non-zero condition is technically 

violated here, ])tit. we can assume that  for some Q • {c~) ~, a i is not  identically Q(J) 
zero in the first IQ(J)] coordinates if i _< j and use the theorem to choose P • 

(Q)'~.) In this case we shall say that. (ei)iE~z is a strong asymptotic  model  of 
(:vi)is,, generated by P and (ai)ie..  

(4.4.3) Assume tha t  we are in the si tuation of (4.4.2) with in addit ion a i = a 

for all i • aJ and some fixed a. Then we will say that  (ei)iE~z is an s t r o n g  

asymptotic  model  of  (:ri)ie~ generated by P and a. In this case, (ei)ie~, is 

also a spreading model of a normalized block basis of (,l?i)iEw" 

Indee& tbr each i E ~z let Yi = x(P( i ) ,  a); then (Yi)iEce is a normalized block 

basis of ( x i ) i ~ .  Also~ fi'om the definitions, given I~ • a~ and (bi)ie, • [ -1 ,  1]', 

Z biyj~ - Z b~e~ <_ e, ,  
iEn iEn 

provided tha t  ~ _< jo < " '" < j~ -J -  Thus, (ei)iEw is a spreading nmdel of (Yi)ie~,. 
(4.4.4) If  (ei) is all asymptot ic  model generated by the strong basic array 

(x}~),,ie~, then (ei) is a s trong asymptot ic  model generated by (.r}~), P and (a~) 

where P(i) = {i} and each a~  = (1, 0, 0 . . . .  ). 
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PROPOSITION 4 .5:  Let (ei)iE~, /)e all a,'O'ml)totic modol of X generated l)y the 
basic a r ray  (:r}'). Supl)oso (.r}') is either a u'eakly null array  or a blo('k basis 

array (w.r.t. some basic sequence in X) .  Let (fi)iE.~ be a normalized 1)lock basis 

of (ei)iEw. Then (fi)iEw is also an asyml)totic model of X .  

Prootc? Let (.r}').,,e~ generate (ci)ie~,. Choose Q E @}~' and a i ' s  such that  for 

every i E cv, IQ(i)l is equal to the length o f a  i and L = e(Q(i), ai). V~Te shall define 

a new K-basic  array (yI~),,,/E~, which asymi)totically generates (fi)ie~. For i E :o 

let .i:i be the ith diagonal of the array ~ r" ~ • .o .. r? ~. i . , . , e ~ . ,  s o  s ' i  = ( . ' i ,  : " ~ + ~ .  • , • , + , , ,  • • .). 
As before, let a-'i (F, a) be defined relative to this sequence. For n, i E ~z let : i '  = 

.? i(Q(,) .  a") .  By passing to a subarray of (z~'),,,ic~., we obtain,  as in Lemma4.2,  

an array (.~/~'),,,iE~.' which is K-basic  and asymptot ical ly  generates (fi)iE~. | 

Remark 4.6: The proposit ion is false in the general setting. The ln'obleln with 

the proof  is tha t  the rows of " (Yi),,.iE+, need not be uniformly basle. We sketch how 

to construct  a space X admit t ing  an asymptot ic  lnodel (.ri)iE~ for which some 

normalized }~lock basis (yi)ie~, of (.ri) i E~ is not an asympto t  ie model of X.  First, 

we define a norm on [(.ri)iE~ ] where (.ri)iE++ is a linearly in<lel>en<lent sequence 

in some linear space. Let n i $  ~c rapMly and let (E(i)),e~, be a Sl>ecial part i t ion 

of a,, with [E(i)I = ,'i. Set for x =  E ai.ri, I[*ll = 111ax(ll("Jll,,_,,(llE~,rll~,)>), 

where Ei:r is the restriction of x to Ei and T* is the dual norm to Tsirelson's 

space T. (xi)iE~, is an un('onditional basis for the reflexive space [(.ri)ie~]. Let 
1 

Yi = ~ Y~jEE~ xj. Then (Yi)iE~, is a norlnalized block basis of (.ri)iE~, which is 

equivalent to the unit vector basis of T*. 

Let X = [(xi)sE~,,] ~5oc (}-~ ('l)~',_,. Let .,c:' = .ri + e i'" where (eI')iE~, is the refit 

vector basis of the n th  copy of (t in (y~ (,)c2. Then (.r}'),.iE,, is a basic array 

and generates the asymptot ic  model (xi)iE~,. It  can be shown, however, tha t  

(Yi)iE~. is not  an asymptot ic  model of X.  The basis (,ri)ie,~ U (e}~),,.iE~, for X 

is boundedly  complete and m~eonditional and thus by po~ssing to a subarray we 

may assume that  y~' = : ,  + w~' where z,, ¢ X and (w}')i¢~, is a seminormalized 

block basis of the basis above, in some order, for X.  

If  P is the natural  projection of X onto (y~ ('l)<,, there must  exist m so that ,  

passing to another subarrary, inf,>_,, inL_>, IIP(*,'7)l[ > 0. Otherwise, a subse- 

quenee of (Yi)i~, would be generated by a block basis array of (xi)ie~, which is 

impossible. It then follows that  (Yl)ie~ must dominate  the re:it vector basis of 

t2 due to the s t ructure  of (y~ ('1)r2- Again, this is false. 

It is always true, however, tha t  a normalized block basis of an), spreading model 

of X is again an asymptot ic  model of X.  The difficulty of choosing (Yi),,ie,~ to 
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be a basic subarray  (in the proof  of Proposit ion4.5)  disappears  in this instance. 

We next  collect together  a number  of remarks  and proposi t ions concerning 

a sympto t i c  nmdels. 

Observation 4.7: (4.7.1) I t  is not t rue in general tha t  an asympto t i c  model  

(ei)ie~o of a basic sequence (xi)ic~ (as in (4.4.2)) will be equivalent to a block 

basis of some spreading model  of X,  even if X is reflexive. 

Indeed, consider X = ( ~  e2)ep, wi th  2 < p < oo. The  only spreading models  

of X are gp (isometrically) and/~.2 (isomorphically).  This is well-known and easily 

verified. Let t ing ( e ~ ) ~  be the unit  vector  basis of the "n th  copy" of g2 in X ,  

we can order the uncondit ional  basis (e}~),~.ie., for X as follows: 

0 0 4 , c o  ' e  0 e' 4 , 4  . . . .  ) .  (e o,e I , e I ,e~, 3, 2, 

Take P(0)  = {0}, P(1)  = {1,2}, P(2)  = {3, 4, 5}, P(3)  = {6, 7, 8, 9} . . . . .  Then  

this basis along with P = {P( i )  : i E co} E (co)~ generates a s t rong asympto t i c  

model  (ei)iC~z for the sequence of a i ' s  defined as follows. Let ni be posit ive 

integers increasing to oe and take a ° = a 1 . . . . .  a n° = (1, 0, 0, 0 . . . .  ), a "°+1 = 

. . . .  a,,O +,u = (0, 1, 0, 0 . . . .  ), a,~O +n, + 1 . . . . .  a '~° +'~' +'*~- = (0, 0, 1, 0 , . . . ) ,  etc. 

Then  (ei)iEw, a s  iS easily checked, is the unit  vector  basis of ( ~  (~)ep,  which is 

not equivalent to a block basis of any spreading model  in X.  

(4.7.2) One can slightly change the space in (4.7.1) to obta in  a reflexive space 

X and a s t rong asympto t i c  model  (ei)iEc~. which is bo th  not equivalent to a block 

basis of a spreading model  nor does E = [(ei)iE~] embed into X.  The  same sort  of 

scheme as presented in (4.7.1) works for X = (}--2~ T)e~, the (.) sum of Tsirelson's  

space T (see IF.J74]). The  only spreading models of this space are all isomorphic 

to C1 or Cs. For. if P,~ is the norm 1 na tura l  project ion of X onto the " m h  copy" 

of T in X,  and (z.i)ic~ is a normalized basic sequence in this reflexive space, then 

passing to a subsequence we may  assume either: for all J~, limi-4oc [IP,~.c.ill = o, 
in which case, by a gliding hump argument ,  (xi)ic~ has (.~ as a spreading model; 

or: for some n, limi-+o~ [IP,,xgll > 0, in which case (.ri)ic~ has a subsequenee 

whose spreading model  is isomorphic to Q. Now, if we use the b&sis ordering of 

(4.7.1) and the same P( i ) ' s ,  and take the a i ' s  to be such tha t  for each sequence 

(0, 0 . . . . .  0, 1, 0, 0 . . . .  ), infinitely many  a i ' s  are equal to this sequence, then we 

obta in  ( ~  fj)e2 as a s t rong asympto t i c  model.  This does not embed into X.  

(4.7.3) Spreading models join the infinite and arbi t rar i ly  spread out and finite 

dimensional  s t ructure  of X.  Another  such joining is the theory of a s y m p t o t i c  

s t r u c t u r e  developed by B. Maurey, V. Mihnan and N. Tonlczak-Jaegermann  
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(see [MMT95]). 111 its siml)lest form this can be described as fbllows. Suppose 

X has a basis (xi),c~. For a positive .17 C ~', a normalized basic sequence (ei)i~,, 

belongs to the n th-asympto t ie  s t ructure  of X,  denoted {X },,, if tbr all ~ > 0, given 

m0 E w there exists Y0 E S((,,.~)~\,,,o ), so tha t  for all mj E w there exists yj C 

S((. , .~)~\. ,1) . . . . .  so that  for all m . - I  C ~z there exists Y,,-1 E S((., ,~)~\,. , ,_~), so 

that  (9 i ) i~ ,  is (1 + c)-equivalent to (ei) ie, , .  (Here, S((a:~)~e~\,,,~) denotes the unit 

sphere of the linear span of {.ri : i E :v \ mj}.) 

One difference between this and spreading models is tha t  spreading nlodels are 

infinite. However, one can paste together the elements of the sets {X},~ as follows. 
C o ,~  , n ( i)i=1 is an a s y m p t o t i c  v e r s i o n  of X if' for all n, (( i ) i=1 E {.1(},, [MMT95] .  

But certain infinite threads are lost nonetheless. Furthermore,  spreading models 

arise from "'every normalized basic sequence has a subsequence. . ." .  {X}n can 

be described in terms of infinitely branching trees of length 'n. The initial nodes 

and the successors of any node tbrm a normalized block basis of (Yi)ieco. ~?'e Call 

label such a t r e e  asT, ,  = {.r(,,, o ..... ,,,k) : 0 - <  m0 < ' "  < m # , k  C n }  ordered by 

.r,~ _< .r..3 if the sequence n is an initial segment of/3. Then (('i)iE,~ E {X,,} iff 

there exists a tree T,, so tha t  for all e > 0 there exists *~0 so that  if *~o _< m0 < 

• .. < m , , _ , ,  then (.r(,,~ ....... ,~.))a,e,, is 1 + e-equivalent to (ei)ie, , .  This stronger 

s t ructure yields in some sense a more complete theory than that  of spreading 

lnodels where a immber of problems remain open. The theory of asymptot ic  

models generated by block basic arrays, while being closer to tha t  of sl)reading 

models, lies somewhere between the two. The theory and open 1)roblems of 

spreading models and asymptot ic  s t ructure motivate some of our questions and 

results below. 

Further,  it is clear tha t  if X has a basis (xi)ic~, and (ci)ie~. is an asyml)totic 

model of X generated by a block basis array (w.r.t. (.Ci)iEw), then tbr all n, 

(,,)<,, c {x} , , .  

(4.7.4) Supl)ose that  X has a basis and that  all spreading models of a nor- 

malized block basis are equivalent. M u s t  all Sl)reading mode l s  be equivalent  to 

the m~it vector  basis of  Co or ('p for s o m e  1 <_ p < cx~? This question, due to 

S. Argyros,  remains ol)en. Some partial  results are in [AOST]. The analogous 

question for asymptot ic  models has a positive answer. 

Indeed. SUl)l)ose that  all asymptot ic  models of all block basis a r r w s  of X 

are equivalent. If ($~)ic~, is a spreading model of such a space, then all of its 

normalized block bases, being asyml)totie models by Proposition4.5,  nmst be 

equivalent and the result follows fi'om Zipl)in's Theorem (see [Zi66] or [LT77, 

p. 59]). 
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(4.7.5) If X is reflexive and (es)ie+ is an asymptot ic  lnodel of X ,  then (ei)ic~o 

is suppression-1 unconditional.  More generally, this holds if (ei)ie~o is generated 
by ( r 7~ / .n + ~' i ],,,ie~o where, for each n ~ co, (.~i)ie~, is weakly null. 

Tile proof  is very much the same as the analogous result for sl)reading mod- 

els. Let ( b i ) i o ,  E [ -1 ,  1]" and i0 E ~+. We need only show II }-~io,\{io} b~e~ll <<_ 

1[ Y'~iO, biei  11. 
Let. m > ~. Since (.r}")j~. is weakly mill there exists a convex colnbinatioll of 

small nornl: II E, ,ek  .io q,a, ,~+io+l,[ I < e',,. For p E k we consider the vector 

. i  , io 
YP : E bi't +n+i q- bioa m+io+p 

i E i o  

III bieill - lly,,lll < and so 

p~Ck cp YP 

but also 

E C P Y P  >_ ~ b i e i  - 
pE k i 

i ~ i  0 

~+ - L 

~- E J b~am+l,.+i. 
i=io+1 

+ ~- . 

e,, -Ib+oi&, 

and this yiehls the desired inequality. 

(4.7.6) In general, the n th  asymptot ic  s t ructure {X},, of a Banach space X 

with a basis (:ri)ie~o does not coincide with {(ei) io,  : (ei)ie~ is an asymptot ic  

model generated by a block basis array of (xi)ie~o}. In fact, these may be vastly 

different for every subspace of X generated by a block basis of (:ri)iEce. 
To see this we recall tha t  Th.  Schlumprecht and the second named author  

in [OS99, Section3] constructed a reflexive X so that  (Yi)io+ C {X},, for all 

normalized monotone basic sequences (Yi)io~. Since this includes the highly 

uncondit ional  summing basis (of length n) the claim follows from (4.7.5). 

(4.7.7) It is possible for a space X to have C't as an asymptot ic  model yet no 

spreading model of X is isomorphic to ft,  nor to co or ally (p (1 < p < OO). 

Indeed, the reflexive space X constructed in [AOST] has the proper ty  that  no 

spreading model is isomorphic to fp (1 < p < OO) nor Co. Yet every spreading 

model of X contains an isomorphic copy of tot. 

(4.7.8) There  exists a reflexive space X for which no asymptot ic  model contains 

an isomorphic copy of Co or (p (1 _< p <_ oc). 

X is the space constructed by Th. Schhnnprecht  and the second named author  

ill [OS95]; we recall the example: ]1. [I is a norm on coo satisfying the following 
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implicit  equation: 

{ ( ),j2} 
I1. ,11-= max ll.,'llco, Z . 

k E w  

where - -  : Eo  < . . .  < = 

log2(1 + n~.) and (~')~'E~ is a sequence of posit ive integers satisfying 

1 1 
Z S(,,,,--U < 
/,.E a., 

X is the complet ion of Coo under this norm. The  unit vector  basis (u~)iE~ of coo 

is a 1-uncondit ional  basis for X and X is reflexive. The  fact. t ha t  X does not 

admi t  an asyniptot ic  model  (ei)iEc~, equivalent to the unit  vector  basis of (1 (and 

hence, by Proposi t ion 4.5, no a sympto t i c  model  E contains (1) is similar to the 

proof  in [OS95] tha t  no spreading model  is isomorphic to (1, and so we shall only 

sketch the argument .  

Suppose tha t  (ei)iE~, is an asympto t i c  model  of X and is equivalent to the unit  

vector  basis of ('t. We may  assume tha t  ( e i ) iE  w is generated by the basic ar ray  

(-r} ~ ),,iE~' where each (:rl ~ )iE~ is a normalized block basis of (u.i)iE~. By i terat ively 

passing to a subsequence of each row t. i jiE~ and diagonalizing, we may  assume 

tha t  (ll.,'211,,)~e~. converges weakly in Br~ as j --+ oo to a"  E Bc~. Considering 

the sequence ( a ' ) , E ~  C Br~ and passing to a subsequence of the rows, we may  

assume tha t  (a'~),~E~. converges weakly in Bc~ to some a E B<~. This corresponds 

to passing to a subsequence of (ei)iEw, but  tha t  is still equivalent to the unit  

vector  basis of fl  and so we lose nothing here. Thus,  we are in the s i tuat ion 

where the limit dis t r ibut ion in (.~ of the m h  row (:r}')ie~ is a" and therefore we 

r" " rh'~X is weakly null in can assume (11:-i II,~j)je~o in ~2 is equal t.o a"  + h  i , where ~ -i JiE~ 
(2. Fur thermore ,  a '~ = a + h ' ,  where h "  is weakly null in (2 aud hence, we may  

assume, a block basis in (2. In this manner ,  for any N and (bi)iEx E [--1, 1] x we 

have II 2 i e N  b.ieilt ~ II ~ic,'v bi:r~.~ It, provided N <_ k0 < . - "  < k,,~_l. 

Now we can also assume tha t  II E i e x  bge~ll _> 0.99. E~eN Ib~l. This is because 

(1 is not dis tor table  (see [Ja64]) and every block basis of an a sympto t i c  model  of 

X is (by Proposi t ion  4.5) also an asympto t i c  model.  Thus,  by careflflly choosing 

the ks's, we have 0.99"~-~iE N Ib~l < II E~eNb~.r[.~ll where (ll:d.~ II)e2 ~ a i + h i + h [ , ~  

and the vectors (h 'i + h i ~.~ ) i ex  are a block basis in (2. At this point,  we use the 

a rgument  in Theorem 1.3 of [OS95] to see tha t ,  if N is sufficiently large depending 

upon a, this is impossible.  

Fur thermore ,  the a rguments  of [OS95] apply  easily to show tha t  it is not 
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possible to have an asympto t i c  model  (e.i)iEc~, equivalent to the refit vector  basis 

of Co or t' v (1 < p < oc), which completes  the proof  of (4.7.8). 

(4.7.9) The  proof  of (4.7.8) actual ly  reveals tha t  no spreading model  of an 

asympto t i c  model  of X can be isomorphic to (1 (or Co or any ('p). For if 

E = [(e~)~e,~ ] is an asympto t i c  model  of X,  then any spreading model  of E 

is necessarily a spreading model  of a normalized block basis (fi)ie~,, of (ei)~E~, 
and this in itself is an asympto t i c  model  of X.  Let (~i)iEa: be the spread- 

ing model  of  (fi),iE~o- The  proof  shows that ,  for sufficiently large N,  we can- 

not have [1 ~iENbi f<[[  >_ 0.99" ~iCe\ '  Ib*l for all (bi)iE~" • [--1,1] N and any 

~:0 < " ' "  < k N - 1 .  

(4.7.10) G. Androulakis,  the seeond named  author ,  Th. Schlumprecht  and 

N. Tomczak- Jaege rmann  have constructed [AOST] a reflexive Banach space X 

for which no spreading model  is reflexive, isomorphic to e0 or isomorphic to 

(1- However, every X adnfits an a sympto t i c  model  which is either reflexive or 

isomorphic to e0 or ~'1. 

Indeed, X admi ts  a spreading m o d e l / )  with an uncondit ional  basis and, by 

[aa64],/) is either reflexive or contains an isomorphic copy of co or /'1- So the 

result follows by R e m a r k  4.6. 

There  is a big difference between considering all a sympto t i c  models  of X and 

of those generated by weaMy null basic arrays or block basic arrays  as our next  

proposi t ion illustrates. Also, it, i l lustrates again the difference between the class 

of spreading nmdels and asympto t i c  models: if (ei)iEw is a spreading model  of 

co, then (ei)iEo., is equivalent to either the summing  basis or the unit  vector  basis 

of Co. 

PROPOSITION 4.8: Let  (ei)iE~, be a normalized bimonotone basic sequence. Then 
(ei)iE~o is 1-equivalent to an asymptot ic  model  of  Co. 

Proo£" Let cA, $ 0. For all posit ive integers Ji: there exist ~ .  E co and veetors  

(.ri )iEk E SeL~. so tha t  

'iEk " iCk iCk 

fbr all (ai)ie~, E R k. Indeed, we choose (J'/~')iE,~. C B[(~d~e~,]. so tha t  

supie,,k I~)(~)l  -> (1 - ~k)llell for e c [(e~)~e~.] and f~'(ei) = 1 for i • t', and 

~ = r ~ ' < ,  where r k : [(ei)ie~,] --+ t'~2 is given by r k e  = (f~'(e))~e, , . . .  let z i 

= (xi)iE~' as being contained in the indicated We write co ( ~  fo~ )~o and regard k 

copy of f ~  C_ co. Let a' = :r 1_[_. .+x{ )+ l  and in general (Yi)kEaa,i>_/," be defined by yO 

= . 4  + ÷ -,:i, +'  
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It is easy to check tha t  (Y~')k.iE~v is a basic a r ray  (tile rows arc equivalent to 

the sunmling basis) and this a r ray  generates  (ei)iE,~. | 

Remark 4.9: Recall [DLT00] tha t  a basic sequence (.ri)iE~, is said to be a s y m p -  

t o t i c a l l y  i s o m e t r i c  t o  e0, if for sonle sequence ~,, $ 0 for all (a,),,e~, E Co, 

S,l l)(1-a, , )I( , , , I  _< Z a , , . r ,  _<supla,,I .  

hi  this case tile proof  of Proposi t ion 4.8 ('all be adopted  to yield tha t  [(.ri)i~o.,] 

adnfits all nornlalized binlonotone basic sequences as asynlptot ic  models.  Ill 

general, using tha t  e0 is ;lot dis tor table  [Ja64], one has tha t  if X is isomorphic to 

Co then tbr all K > 1 there exists C ( K )  so tha t  if (ei)iE.c is a norlnalized K-bas ic  

sequence, then X admi t s  an a sympto t i c  lnodel C(K) -equ iva len t  to (ei)ico.,. We 

do not know if the conclusion to Proposi t ion 4.8 holds ill this case. We also do not 

know if this p roper ty  characterizes spaces containing c0 (see the open problems 

ill Section 6). By way of contrast  it is easy to see tha t  all asyml)tot ic  nmdels of 

/j, (1 < p < vc,) are 1-equivalent to the unit  vector  basis of (p. Moreover,  we have 

PROPOSITION 4.10: If  (('i)iE~, Js all asynll)totic model of  ('l then (el)JEw is 

equivalent to the unit vector basis of ('1. 

Proof? Let (r('),,,iE~ be a K-bas ic  array generat ing (ei)iE~- Since each row is 

K-bas ic  there exists a > 0 so tha t  for all .n, m E co there exists L" E co with 

IIP'"(.r}')ll > 5 for i >_ t: where P "  is the tail project ion of (~, P"'(a.i) = 

(0 . . . . .  0, a , , , a , , ,+ l  . . . .  ). Using tha t  the unit  vector  basis of (1 is boundedly  

conll)lete we ('all find a subsequence vYi ~iE~o of each row (a i ),Ew of the fornl 

y]' = y,, + h}' where td', --+ 0 weak* in (1 as i -+ oc and [Ih} ' ][ _> 5. Thus,  up to ar- 

bi t rar i ly small  per turba t ions ,  we nlay assulne h}' and h| are disjointly suppor ted  

for i # j .  And doing all this by a diagonal  process we can assmne tha t  (Yi),,,ic,~ 

is a subarray  of ~./r"i j,,,ie~,.x It. follows easily tha t  

 a;ci _> a l.;I. 

From Proposi t ion4,8 we see tha t  (1 Call |)e all asyml)tot ic  model  of a space 

X with a basis wi thout  being an asympto t i c  nlodel generated by a |)lock basic 

array. But  this cannot  hal)pen in a boundedly  conlplete situation: 
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PROPOSITION 4.11: Let (di)iEw be a boundedly complete basis for Y and let 
X C_ Y be a weak* closed subspace. I f Q  is an asymptotic model of X ,  then Q 

X n is an asymptotic model generated by a basic array ( i )n,~e~ where, for each n, 

(zp)~e~ is weak* null. 

In this proposition the weak* topology on Y is the natural one generated by 

regarding Y as the dual space of [(d~')ie~], where the d*'s are the biorthogonal 

functionals of the di's (this is, for all i , j ,  d*dj = ~j). Thus, d ,  = ~a~*di -+ d = 
aidi weak* if (d~)~e~o is bounded and a~ -~ a / f o r  each n E 02. 

Proof of Proposition 4.11: Let (Y~)n,ic~ C_ X generate the asymptotic model 

(ei)ie~ which is equivalent to the unit vector basis of ~1. As in the preceding 

proposition, by passing to a subarray we may assume yn = f~  + x~ where, for 
. n  each n, (x i )ie~ is weak* null and (/n)ne~ C_ X. If (/~)ne~\k is not equivalent 

to the unit vector basis of el for some k, then some block sequence of absolute 

convex combinations of the f~ ' s  is norm null. We use this (as in the proof of 

Proposition4.5) to generate a new basic array of the same form where I]/nl] < e~ 

for en $ 0 rapidly, and so a subarray of (x~/llx~ll)n,zc~ generates the unit vector 

basis of fl- II 

The asymptotic models of Lp (1 < p < co) are necessarily unconditional and 

in fact every normalized unconditional basic sequence in Lp is equivalent to an 

asymptotic  model. 

PROPOSITION 4.12: Let 1 < p < oo. There exists Kp < oo so that if (xi)ic~ is a 
normalized K-unconditional basic sequence in Lp then (xi )ie~ is K Kp-equivalent 
to some asymptotic model of Lp. 

Proo~ This follows easily fl'om arguments of G. Schechtman [$74]. There exists 

Ifp < ec so that  (xi)ic~ is K/(p-equivalent to a normalized block basis (Yi)ie~ of 

the Haar basis (hi)ie~o for Lp. Furthermore, if (zi)ie~ is a block basis of (hi)jew 
with I~1 -- lyil for all i, then (xi)ie~ is KKp-equivalent to (zi)ie~. For n C 02, 

, f t  ?~ let (Yi)ie~ be a normalized block basis of (hi)ie~ with ly~l = ly~l for all i. By 

Lemma 4.2, some subarray of (Y'~),.ie~ is thus a block basis array of (hi)ie~. By 

our above remarks and Proposition 4.1, some subarray of (Y~)n,iew generates an 

asymptotic  model Klfp-equivalent t o  (Xi)iew. II 

Another natural question is if X has Y as an asymptotic model and Y has 

Z as an asymptotic  model, does X have an asymptotic model isomorphic to Z? 

If one replaces "asymptotic model" in the question with "spreading model", the 
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answer is negative (see [BM79]). In the following, we present an example that 

shows the answer also to be negative in a strong way for asymptotic models. 

Example 4.13: There exist reflexive Banach spaces X and Y so that Y is a 

spreading model of X, t'l is a spreading model of Y and ~1 is not isomorphic to 

any asymptotic model of X. 

Proof: X and Y will both be completions of coo under certain norms which 

will make the unit vector basis of coo an unconditional basis for each space. We 

will denote these bases by (v~)~e~ for X and ( u i ) ~  for Y. Both spaces will be 

reflexive. 

First we construct the spaces Y and X. The construction bears some similarity 

with those in [MR77] and [LT77, p. 123]. To begin, let (mj)je, be an increasing 

sequence of integers w i thmo  = 1 and for any k E w: m o + ' - ' + m ~ .  < 2m~:, 

Ene~\{o}(1/~v5-~. )  < 1 and ( 2 m k ) 2 / ~  < 1. Let ~- be the subset of coo 

given as follows: 

:= ~ f  : E(1E{j/v/m,i~):  n E w, IE{,I < m~j, n __ io < . . .  < i~_~ 5r 
k jEn 

and Eik fq Ei~ = 0 whenever k # l }, 

where 1E b E Coo is the indicator function, 

1 if k E Eij, 
lEvi(k) = 0 otherwise. 

For x E Coo, let 

Ilxll~, :=  sup  fA:, 'x) 3 : m E w, (fk)kem C_ p and 
\ k C r n  

are disjointly supported}, t i le  /k's 

where (f~, x) is the scalar product of fk and x. We say E E [w] <~ is admiss ib le  if 

rain(El > I E] and g E Coo is admissible if supp(g) (the support of g) is admissible. 

Set 6 := { f i e  : E is admissible and f E ~'} = {f  E ~ ' :  f is admissible}, and for 

x E coo, let 

{( Ilxllx :=  sup E (gk, x) a : m  E w, (g*~)*~cm C G and 
kern 

gk's are disjointly supported~. the 
/ 
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We will also write g(.r) tbr (9,.r). It is clear that (t,j)j~,,, and ( , j ) j ~ .  are each 

suppression-1 mleonditional bases tbr X and ] ' ,  resl)ectively. Because each basis 

admits a lower (a estimate on disjointly supported vectors, neither space <'ontains 

(~'s  mfitbrmly (see [J<)76]). Thus. both bases are bomide<lb" eomlflete. Also, 

both bases are shrinking and hence X and ]" are reflexive. To see this for ]" 

(the proof for X is sinfilar) suppose (!/i)ic~ is a normalized block basis of (uj)jE:, 

wlfich is not weakly mtll. By the definition of the norm in ] ' .  and passing to a 

subsequence of (!)i)ic~,. we obtain f E iF and ~ > 0 with I(f,.q/)l > ~ for all j, 
wlfich is clearly iml)ossible. 

The sequence (Oj).iEw is 1-symmetric and is the spreading model of ( t ' j ) jG  ~. 

(since if one moves a vector far enough to the right in coo. then the 1" norm 

expressions all become allowable). 

Let Eo < " "  < Ej < . . .  be sets of natural lmmbers with IEjl = m.i and let 

9j = 1 E ~ / ~ . i  ( fb r j  E ~.'). Then IluJllv _> 1 and SUl>j6~, [Igj[b < oc. Indeed, tbr 

some fixed q E w, let ! /= 1 t.:,~/~/~q. First SUl)l)ose f E iF, mid therefore, f is of 

the tbrm J' = Z j E ,  ( l  Fi, i / v ~ i , i  ) (fill" SOllle disjoint ('olleetion ( E i j )  C [~,']<*' with 

[Eis] < mi/ and t~ <_ i0 < . . .  < i ._j).  We shall estimate (f,  9) fl'om abow,, and 

thus we may assmne SUl>l)(f ) C_ E,I. Write f = fJ + f'2 + f:~, where 

1Ei j  . 1E,.~ , j .2= ~ i f s o m e i j = q ,  / 3 =  Z v ~ i j  
f l =  Z g '~i  ' 0 otherwise. 

ij ,~q ij >q 

By the properties of the sequence (mj)je~, we have 

<S', u> : X]  IZ, l "2,,,,,_, , , , , ,  

ij <q 

and 

3E,~ -- ~ t ~ q +  1 
ij >q 

The first term is IEi~,[ 3) l/a 

bern jEn ~,, i)" <q 

Now suppose that fk = ~je,,~. (1E~)./~i)" ) E iF and the (fk)~,e,,, are disjointly 

supported with supp(f~,) C_ Eq for each k E .m. As above, each fk is of tile form 

fk ---- f l + f2, + f~.. Thus by the triangle inequality in (3, 

. 1 / 3  1/3 - .1 / :3  l /a  

z +,,>3) ( z  + ( z  + ( z  
kern  " kfim "/ , 'Era / kfim 
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and sii/ce (by the earl ier  cah.ulat ion)  

IEi]'l < 2, , ,q- ,  

i+,~.  t:<', dm+~, v/7~, - ,alma 

the  first t e r l l i  is 

i)' < q 

- t, t din,, J d in, , )  din<, 
< 1 .  

The  secon<l t, e rm is of the form 

• IA, 3) 1/:~ 

where ~ ' e , , ,  l~, < mq. and  therefi~re, it is < Eh, E,,,(lh,/lllq) < 1. 
The thir<l t e rm is 

+ '  ,+ 
: i . j ~ETt, i j E n  h j ik><j ! i ) ' > q  

- -  ~</+l~,, ~q+l 
m < l .  

Thus, (#j) jE~ is a seminormal ized  block basis of (uj)jE~. in ] ' .  Moreover,  from 

the defini t ion of the  norm,  namely  f ,  if n < i0 < . . .  < i .... 1 and  (bi)iE,, are 

scalars,  then  II Y~dc,, t)iYi3 H >-- I~iEn l)il and hence, if we pass to a subsequence 

of (.qj)jE~ having a spreading  model ,  then  this spreading  model  is equivalent  to 

the unit  vector  basis  of ('l- 

I t  remains  to show tha t  ( l  is not  isolnorphic  to an a sympto t i c  lnodel  of X .  

By the uniform convexi ty  of (3 we have: 

(*) for any  ~ > 0 there exists  A < 1 such tha t  

if' ,r, 9 E B,:~ wi th  II.,' + :Jllc:~ > 2A. then II* - :ill < ~. 

We shall  now fix l>arameters 1 > A I > A2 > A3 > A4 > X5 > 0.9, 0 < 51 < 

~:~ < ~4 < 1/4, (74 = l - A 4 ,  (71 = l - A 1  as follows. We use (*) to ob ta in  A4 

fl'om e4, where we require  e4 (and A4) to sat isfy 1 - 2~4 - 2~'4 > A5. A3 and ea 
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are chosen so tha t  for any normalized basic sequence (xi)iew with a A3-1ower Q 

es t imate ,  if [[Yi - xi][ < c3 for all i • co, then (Yi/l[Yi]l)ie~ admi t s  a A4-1ower Q 

est imate .  Then  choose A2 so tha t  A2 a + ~3 > 1. Take c1 > 0 to determine A1 by 

(*) so tha t  1 - 251 - ~1 > A~. I f  ~ is an a sympto t i c  model  of X ,  then, since X is 

reflexive, by the proof  that/~1 is not dis tor table  (cf. [Ja64]), we may  assume tha t  
,~n X admi ts  a block basis a r ray  (. i )~,ie~ which asymptot ica l ly  generates (ei)ie~, 

where [1 ~ i e n  biei[[ > A~ ~ie,~ ]bil for all scalars (bi)ien not identically zero. 

CLAIM: For n _> 1 there exists Ifn • co and in • co so that, i f  i >_ i , ,  there exists 

Fi C_ supp~'p with IFil < I(,~ and IIxFL\F, II < ~3. 

To see this, fix n > 1. Since lie ° + enll > 2A~, there exists k • co so tha t  if 

i > k, then IIz ° + xTll > 2~,.  Let i > k be fixed and choose disjointly suppor ted  

(gj)jEm C_ ~ SO t h a t  

(E ),/3 (1) (gj(x °) + gj(X~' ) )  3 > 2,~ 1. 

Thus,  by our choice of c1 using ( , ) ,  

~0 .n (2) II(gj(..a-))j~,,- (g j ( . '  ~ )b~,,,l le3 < -~,. 

We reorder the gd's and choose rh < m so that for j C ff~., supp(gj)Asupp(x °) =/= (~, 
and for j C m\f f~ ,  supp(g/ )Nsupp(x~, )  = 0. From (1) and the tr iangle inequali ty 

{N" g.[xn'~3"~l/3 in ~3, ~z--~jCr, J ~' i J J > 1 - 251, and from (2) mid the choice of ff~ we obta in  

(Y~jem\~gj(x}~)3) 1/3 < ~1. Thus,  by the triangle inequality, 

(3) gj(xp) 3 > 1 --  2(~ 1 -- £1 > /~2. 

By admissibil i ty restr ict ions for j • ~D,, ]supp(gj)  l _< max(supp(x~) )  and thus, 

since ff~ < max( supp(x° ) ) ,  

je[~J supp(g j) _< (max(supp(x° ) ) )  2 =: I(n.  

Let Fi = Uje,T~(supp(gj)n supp(x}~)), so [Fil <_ I ( , .  By (3), 1 = I1:):~']1 > 
A3 n 3 1/3 ( 2+llx~ I~\f~ll ) andso ,  bY our choice of ~a±~3 " 2 ~ - 3  > 1, we obtain  II:r7 L\F~ II < ~3, 

which proves the claim. 

Using the claim for ~ _> 1, let YI" = xi I~\F,/[Ixi I~\F, H for i > '~,~ and Yi = .~i 

for i _< in. By Proposi t ion 4.1, we pass to a subarray  asympto t ica l ly  generat ing 
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(fi)iE~.. By our choice of ~3 and tile claim, for all ,lot identically zero scalars 

(bi)lKi<n, I[~i=1 if, ill > /~4" Ei=I Ibil • Since Isupp(yn)I <_ A ,  for n _> 1, by 

passing to another  subarray we may assume tha t  for ,7 >_ 1 there exists x n E Coo 

so that ,  i f i  > n and yV = (0, 0, a]", . ,0 ,  a,'2 ~,0, .  ,0, a" 0, ..) where the 

a~'s  are the non-zero coordinates of x~/~, then x"  . . . .  (a~',. ap,~,O,O,..'* .). Of  

course, p ,  < I~,~. In short,  the ' n, - Yi s are an identically distr ibuted normalized 

block basis of (uj)je~o and (~'y)jE~, i.e., in bo th  X and Y norms. This is done 

by passing to a subsequence in each row, iteratively, so that. the distributions 

converge to tha t  of x" .  We then diagonalize. This array still asymptot ical ly  

generates (f~)iEo... Of course, we lost our 0th row, so let us relabel everything as 

(x~'),~,iE~ asymptot ical ly  generating (fi)iGo with the ~4-loweI" ~1 estimates and 

the fact tha t  a:~ ~ equals x" ill distr ibution for i >_ n. And our old K,~ becomes 

K, ,_ ,  in the new labeling. 

From this point on we work in Y (when comput ing  [I b. xL II for i0 

large, the X and Y norms coincide). For x = (ao . . . . .  a~_, ,O,  0 . . . .  ) E coo, 

let. x* :=  (a~(o) . . . . .  a,~(,,_l),O,O . . . .  ), where 7r is a permuta t ion  of n such tha t  

la~(o)[ > --- _> la~(,,_l)l. By passing to a subsequence of the rows (the new ar- 

ray still asymptot ical ly  generates ( ,  with lower est imate A4; indeed, it generates 

a subsequence of (fi)iE~.') we may assume tha t  x"* --+ a: E co coordinatewise, 

where x = (ao, a~ . . . .  ) with laol >_ Jail  ~ " ' ' .  Also, since Y is reflexive, x E Y 

and Hyliy _< 1. Choose p E w so that  [l(ap, av+l . . . .  )[IY < g4; choose M E co so 

that. ~ '  K 20<e4  (recall tha t  No is the cardinality of the support  of x°); and 

fl,rther choose N > 8 K o M  so that  ( pN)  1/3 < N / 8 .  

We next choose "~,~ $ 0 with Y-~-,,E~\{0} ?,~ < 1. For each n E co choose %+1 > 0 

so tha t  i fg  = 1 E / ~  is a term of some f E Y with the proper ty  tha t  Ig(-')[ -> 7~ 

for sonle ][zHy < 1 with [supp(z)] _< K,, ,  then [g(y)[ < % + ,  whenever [[YiiY _< 1 

and ]]YI[~ < G,+~. By' passing to a subsequence of the rows again and relabeling 

and not changing the first row of x° 's  we may assume tha t  a:"*ip = a:ip for all 

positive n (this actually introduces a slight error which we shall ignore in tha t  it 

is insignificant to what  follows) and 

(4) i t '*  = a:Iv + .flip,p, d + x [(v,~,l,d 

where ]]m'~*i[p,,,K,di]~ < 5',,, the I]" ]1oo being calculated relative to the (uj)- 

coordinates, where p < Pl < I(1 < p2 < It2 < P3"" ". Now ]ix° o + -~ ~ N _ I  ..t:V.z~ I >  

2/~4, provided i0 < il < ' "  < iN are large enough. We fix these elements and 

use (4) to write each ,.n = x~,i~ (1) + " a:v .~.i,~ .ri, ' (2) + .  ,,~ (3), where the three terms are 

disjointly supported and each has, respectively, the same distr ibution as the three 
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t.erms in (4), thus  .i,",,, (2)* = .  I[pq,. l. Choose disjointly supl)orted (gt.)ke,,, C_ iF 
with 

(5) o + X-" c~' g k  ; r i  o Z . . ~ '  ~,, > 2A4"  

kern n = l  

It follows that  
/ ,, 113 

0 3 ( Z 9't'(Xio) ) > 1 - - 2 5 4 .  
\ kern " 

\'%Mte gk = E j  E, k (1 E~). / ~ i ~ )  as in the definition of iF. We shall call 1 E,).. /v/7771kj 

a t e r m  of gx:. By reordering the gk's we may assume for some fi~ _< m tha t  if 

k _< fi,, then some term l z / ~  of g~, satisfies 

1E (moo) >/T0"a'4 

In particular, this forces fi~ _< Ko and j < M,  and so ,~. < 3I  for k _< fi~. If 

k E m \ fi*, then for each term 1 E / ~  of g~. we have 

1E o e4 
~ ( ~ i k ) - > --i,2o 

a n d  SO, since at. most 1,20 such ternis could be non-zero on .r°o , 

/ \ 1/3 
54 

(6) ( ~ ax(."°) ~) - Z lak(xT)l < ~ .  S,2o = ~4. 
\ k E m\'ff~ " kEm\ff~ 

From (*), (5) and our choice of A4, 

r !~ | |  | < ~4, ~,(.~'7) - ~ :  ~ . , , , ) )  ) 
. = 1  

and so, from (6) and the triangle inequality in (3, 

(7) ,n < 2 5 4 .  

l, E m  \ m  l~ = 1 

Thus, by (7) and (5), 

(8) 
( z (  ,Ngk  ))1,3 

Z ' q , ,  > a -  254-  2~4 > a.% 
hErB \ n = l  
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Now fi~ _< Ko and each hA. _< 31. So we have amongst (9t.)t,e,~, at. most Ko31 

ternis of the forll] 1,~./V~. \ \~ shall show that 

(9) 

g~' .~i,, (1 
I I = |  

+ 9k ~ .  r~', ,, (2) 

+ 'J~ y Z "  ~,, (3) < +~,5, 

which will contradict (8). The second term is easiest to estimat.e; it is 

. \  .y 
1 1 

) E 74 = ~'4- 
~?=J I t=I  

\ ' ~  next estimate the third term in (9). If for a term 1 E / ~  of some gt., k 6 fil 

we have 

I~'J-~r ("'/"(3)) - > ~''" 

t, he l ]  

1 ~ ( S i , ( 3 ) )  _< %/ for l ¢ n. 

Thus 
11~:( 1 : \ "  ) 

~ \ . ~ ,  z_ . .  . , (3)  _< 

and therefore the third t, erm in (9) is 

j = l  - 

( x ) 2N°M 
<_ (KoM) 1 + E %J < _\~ 

j = l  

Finally N )- . ,=l  'ri, (1) eonsists of the vector ~.rlp repeated N thnes on disjoint 

blocks. Hence, its norm is less than or equal t.o twice the norm of the veetor in 

t repeated pN times. Since y ~ = , , ~ , \ { 0 t ( 1 / ~ )  < 1, t.his is 1" which eonsists of 

at. most 2(pN)U:~/N < 1/8. Thus. the left hand side of (9) is 

1 2KoM 1 1 1 1 
<_ g + ~ + ~  < ~ + ~ + ~ =  ~ <:~.~ 

and we have a contradiction, which complet.es t.he proof of Example 4.13. | 

In smmnary, asyml)totic models generalize spreading models. Certain positive 

t heorenls that one would like to have for spreading models are just not true. This 
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was one motivation behind the development of asymptotic structures { X} n  in 

[MMT95]. In that  setting, the theorems are more complete, yet a sacrifice is made 

in that  certain infinite dimensional structural properties are lost. Asymptotic 

models provide a somewhat fuller theory than spreading models, although some 

of the same deficiencies remain. They also provide a context in which some of the 

long outstanding problems in spreading models may prove tractable in this new 

setting (see Section 6.2 below for some of these problems). We believe that  the 

stronger type of convergence one has in strong asymptotic models, as opposed 

to the convergence of arrays, should enter into the solution of some of these 

problems. 

5. Asymptotic models under renormings 

In this section we extend some of the results of [OS982] to the settings of asymp- 

totic models. Information about the spreading models of a space X does not 

usually yield information about the subspace structure of X. For example, every 

X C_ T (Tsirelson's space) has a spreading model 1-equivalent to the unit vector 

basis of t~l, but T does not contain an isomorph of Q [OS981]. But something can 

be said if one strengthens the hypothesis to include all equivalent norms as the 

following theorem of Th. Sehlumprecht and the second named author illustrates. 

THEOREM 5.1:  [OS982] For every X there exists an equivalent norm Iil" [l[ on x ,  

so that we have: I f  (X, II1" Ill) admits ~ spreading model (en)nC~ satisfying 

(a) ( e n ) n ~  is 1-equivalent to the unit vector basis of Co (or even just  IIl~o+e~ Ill = 

1, where (en)..cw is generated by a weakly null sequence), then X contains 

an isomorph of Co; 

(b) ( e n ) n ~  is 1-equivalent to the unit vector basis off1 (or even just  Illeo+e~ 111 = 

2), then X contains an isomorph of t'l; 

(c) (en)nE~ is such that II E ~ , a z e ~ l l  = E ~  a,z for all (ai) E coo with a.i >_ 0 

for i c ~ (or even just  IIleo + e~lll = 2), then X is not  re~exive.  

We stroll develop an asymptotic  model version of each part.  Part  of our con- 

struction will mirror that  in [OS982], but we need some new tricks as well. We 

begin by recalling the construction of the equivalent norm II1" III from [OS9S~]. 

F o r  c c X a n d  .~, C X de f ine  II.dl= : =  Ilcll.~ql + xll + IIcll.~,H - xll,  where [l" II is 

the original norm on X. Then Hxllc is an equivalent norm on X and in fact, for 

all x C X,  21lxll _< Ilxllc _< 2(1 + Ilcll)llxll. Let. C be a countable dense set in X 

and for c C C choose p~ > 0 so that  y'~ec, P~(1 + Ilell) < ~ .  Define for x E X, 

(10) I[l:~:ltl := ~ .  pAlxlt~- 
cEC 
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This is an equivalent norm on X.  We call 111' Ill the a s y m p t o t i c  n o r m  generated 

by 11" }l- We may assume lllxtl] > }lxH- 

THEOREM 5.2: X contains an isomorph of Co if there e:dsts a weakly null basic 

array (x}~),~,iE~ c_ X generating in (X, Ill'Ill) an asymptotic model (ei)iEco which 

is 1-equivalent to the unit vector basis of  c0. 

LEMMA 5.3: Let (X.,).,E~ and (Y.)1,c~ be II1" III nor ,na l i~ed  weakly null sequences 

in X with lim.~-+oo lim.-~oo Illz,~ + 91~111 = 1. Then there exist integers k(O) < 

k(1) < . . .  so that ,setting a := lim,,-+oo II.Tk(.~)ll and :z~.' = -, 'a,,,)/llza-(.~)ll, for all 

y E X we have 

(11) lira liln IiY + x "  + a-~gk(,,)ll = lira 119 + a:',ll. 
~ Z  - - )  ~ O  1Z - -+  OO TFt - - +  OO 

Proof: By Ramsey's  Theorem there exist k(0) < k(1) < .-- so tha t  for all Y E X 

and a,  ,3 E R, 

lira lim ]Iv + a x a m )  + ,/39k(1,)II exists. 
lq} - -+  0 0  lq - -+  OO 

To simplify nota t ion we write (x . , )me~ and (Yl,).E~ for 

(YA:(.)).E~o and thus a := lim.,_+~ II.r,~ll. Now 

Thus 

(Xk(.O)mE~ and 

1 =  lira liln Ill.r.1 +9.[lt  = lira liln ~ p ~ l l * . , + y . l l c  
7 / 7 - - ~ 0 ~  I 1 - - + O Q  TtI - - ~ O O  7 / - - + 0 0  

cEC 

, l Z - - +  OO 
cEC' 

(12) 1 = ~--~.Pc( lira lira I1"-, + y ,  llc) = ~ , p ~ (  lira I1~*'.,11~). 
, 1 1 - - + 0 0  1 1 - - + 0 0  ~ TO, - - +  0 (0  

cEC cEC 

Since Y,, -+ 0 weakly, lim,~-+oo lim,~-~oo ]la:,~ + 91~11~ -> lim,,>~oo II:rml]~ for all 
c E C. From this and (12) we get 

lim lim II.r,. + 9.11~ 
(13) " - + ~  1 ' - ~  

= lira ]]x,,,]l¢ for all c E X (since C is dense). 

Let t ing c = O, this yields 

lim lim liar,, + y,,ll = ~,. 
?~q "--} r2XD 11 - - + O ( 0  

Thus, for all y E X,  

(14) 
l i ln l i ln [II(ty --~ ;Em -~- yl, I] + II - ~"y + *- ,  + y-I]] 

- l i r a  [l l .y + *.~11 + II - . u  + *mill. 
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Again, since (.9,),,~, is weakly null. 

lira I1, , : /+ ., ' , ,  + y, ,  II -> II~,y + .~',,, II a11d 
! I -'-)" , t ~  

l i ra  LI - , , u  + .,',,, + :J,, II >- II - ' , u  + .~',,, II for  , ,  E ~ .  
;1 -'-4 ~£. 

Thus. 1)3' (14), for all y E X we have 

lira lira Iloel + .,,,,, + y,, II --- lira II~'y + .",,, If. 
"11 ~ ~ '  /1 --~ OG HI  -"i' 

which completes tile proof. | 

Note that. it, follows fl'om Lemma 5.3 t.hat if lim,,,~.:¢ l i m , , ~  Ill:r,,, + .~,~ III = 1, 

then for all y E X we can obtain 

"' + , , - L y ~ , o , ) l l  l i , l l  I I~+/ , , , l l  lim lim 11.9 ± .~ ,,, = 
I?tl '- '~ ~'2,C, I~ -">,~,C II1 - - ~  X ,  

for all ehok'es of sign (keeping the sign of.,  J,,, the same on both  sides of (1.5)). 

,11 Proof of  Theorem &2: By passing to a subarray of (.*i),,iE~ we may assume 

that  for each ,, E w we have l i m i - ~  II.ri'll = a ,  (for some (,,). Let s,, $ 0 with 

}-~,,E~, ~,, < co. By passing to a sul)sequence of the rows we may assume that  

tbr all o, a,, --+ o > 0, ]l/a,,  - l / a ]  < s , , /3  and a,, > a/2. In addition, we may 

assume tha t  for all g E X,  o,  3 E R and i, j E a~, 

linl liln Ily + a.~,,~ + 

exists and, moreover, by Lemma .5.3 (actually (15)) we may assume that  for 

y E X and p, q E co with p < q we have 

lim lim "~_L 4- = lim y 4- 
i--+oc , j - + ~  (/1) i--+oc O ) " 

Hence, from the triangle inequality using [ 1 / a -  1/a,  [ < s , / 3  we get 

.,, .r q ~ + : i:~ (16) lira lira y ± '~ /4-  < lira + ei. 
i--+oc, j . . -+oc a. 0 i--~oo . 

By passing to another  subarray and sett ing .ri -- .rl/a tbr i E a~ we may assume 

tha t  for all m E w and y E 2mB(.~,d~e,,,, 

(17) 11.9 4- .~',- 4- .~',,,+* II < fly 4- .~',,, II + 2~,, .  

This  is accomplished using (16). If i is large enough and i < j ,  then 

41 4- < + zo. 
O, (/ (/ I I  
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This fixes i an(l .re = .c(i)/a (under relal)eling) and then we increase j large enough 

so that  t b r j  < k att(l ! /E  2B(.,.,>. 

Y __r! .r~ !/ .r.j! -+- 'J  4 - - -  < + - -  + z t .  
(I (1 (1 

This fixes j and .rl = .r.}/a (under relabeling) and so on. 

We ('laim tha t  

iEm 

which will yiehl the theorem ((.Fi)iE,, a iS then equivalent to the refit vector  basis 

of co). Indeed. t]'om (16) we get 

/E~--~7, +.ri _< ~ +.~'i + ?.~ 
2 

• i E m -  I 

<-""  -< I1."oll + ~ "2~,,, < :,c. i 

R~,mark 5.4: In the ln'oof of Theorenl  5.2 we only used 

lira lira Ill.,"/,,-4-.,.,/, Ill : 1 

tbr all p < q. In other  words. ]lie v + eq][I = 1 for p ¢ q. In the case of sl)reading 

models  (Theorem 5.1(a)) on,' only needs II1% + ',,111 = 1 for p # q. We do not 

know if this is sufficient to obta in  co inside X for asymptotk"  models.  

The  1)roof of Theorem 5.2 was the most  similar to the spreading lnodel analogue 

of" the three results we 1)resent in this section. Our  next 1)roof is more  diffi('ult. 

THEOREM 5.5: For evel:V sel)m'abh' infinite dimensional Banach space X .  there 

exists an equivalent norm IIII'IIU on x with the tollowing 1)ropert3: I f  there exist [[[[. Ill[- 

normalized basic s e q u e n c e s  (ar re)mEw all(l ( ! J . )nEw with lim,,,_+~ lim,,_+~ Illl.r,,, + 
.,, Ull -- 2. tl, en X is no t  retJexire. 

COROLLARY 5.6: X is reflexive if  and only if  there exists an eq,,ivalent norm [Ill" [[[[ 

on X such that i f (e ,  ),,e.. is an asymptotic model o f (X ,  ][6[. 6[6[). then ][][eo+el [[[[ < 2. 

P r o o f  of Theorem .5.5: We first construct  the norm I1[1" IIII on X.  We begin by 

assuming tha t  X -- (x0) q+oc ]" where Y is a subspaee of a Banach  space with a 

bimonotone  normalized basis (di) and we let )) • (( be the inherited norm on Y. 

We assume the norm II • I[ on X is given as follows. If  .r = a.r0 + y E X with 
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a e R and y • Y, then Ilxll = max(la I, ))y((+ Y~'-i~ lY(i)I 2-i) if y = ~ i ~  y(i)di. 

We have the following: 

(18) Let (Xm)me~o and (Yr~)ne~ be weakly null 

[[. [[ normalized sequences in X. 
1 

Let a + 3  = 1, a,/3 > 0 and a ¢ 2" 

Then lim lim ][x0+ 1 , ~ - ~ n - ~  ~xT~ + Ynll = 1 while 

IlaXo + lxml l  + lim 11/3Xo + lynll  lim 
m--~oc Z n--+c~ Z 

= m a x  a, + m a x  Z, = 

(19) Let y • }, y ¢ 0 and let (Xm)mew be a 

]1" ]]-normalized weakly null sequence in X. 

Then, presuming the limit exists, 

l i m , ] y + x ~ ] ]  >_ 1 +  y~2- i ,y ( i ) ]  > 1. 
iEw 

Let I]]" ]]] be the asymptotic norm on X generated by ]]. ]] (see (10) above), and 

let I]H" ]]11 be the equivalent asymptot ic  norm on X generated by ]]]. [H. | 

Before proceeding we present a lemma. The lemma is valid in any (X, ]]. ]]), 
not just in our space above. 

LEMMA 5.7: Let Ill" Ill be the equivalent asymptotic norm on (X, 11. ]l) generated 

by II" II as in (10). Let ('~:m)meal and (Yn)ne~ be lU " Ul-normalized sequences in X .  
(a) Iflimm_~ lim,~_~ IIIxm + Y.III = 2, then there exist integers k(0) < k(1) < 

• .. so that setting"x m = xk(m)/llxk(m)ll and y,~ = Yk(n)/llYk(n)l[, then for 

all y • Y and ill, f12 >_ 0 0 m t  both O) we have 

(20) lim tim IlY + ~x'm +/32Y~n]I 

=, , l i l& ~ y + / 3 1 x ~  +limoo ~ y +  . 

(b) Iflim,~--.oc l i m ~  ]l[Xm + Yn[[I = 2, then there exist integers k(0) < k(1) < 

' = xk(m>/llxk(m>ll and y;  Yk(~I/IlY~o~III, then for • .. so that sett ing x m = 

all y • X ,  ~1, ~2 • N (not both O) we have 

lira lim Ily + /hx ' ,  +/~y,'~ll 
f i~  " ~  (X)  n - ' + ( N )  

(21) = lira 19~1321Y + 9~x',~ 1/321 ~y~ 
~ - ~  I~,1+1 +li& i ~ l + l / ~ l y +  . 
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Proo f :  Again by Ramsey's  Theorem we can find k(0) < k(1) < . . .  so tha t  

relabeling x~,(m) = x .~ and Yk(~) = Y,~, l i m . ~  l im~+~  IlY + (~xm + flYnll exists 

for all y E X and a ,  fl e N. Let a = lim,,z~o~ ][x~][, b = l i n l , ~  I[Yn[[ and let 
I 1 x m = x m / a ,  y~ = y n / b .  We will prove the conclusion of the lemma for these 

sequences which will yield the lemma. 

(a) We first suppose tha t  31 +/32 = 1. Set /31 = i l l~a, ~2 = /32/b. From our 

hypothesis, 

lira linl Ill/?lX,z + f i2y ,  [1[ =/?~ +/~2. 
~ - - ~  OO ?Z- }O<? 

From the definition of Ill" Ill and the triangle inequality in each II" I1~ we obtain, 

for c E  C, 

(22) lim lim II/~,x.z +/3~Ynll~ = lim IIZ3*x,~ll~ + aim II~y~ll~. 
~ Z - ~  O0 n --~ O0 f t Z ~  O0 n --+ O0 

By the density of C in X this holds for all c G X.  

Sett ing c = 0 in (22) yields 

(23) lira lira 113xx'~ + &GII = 9 ,  + & = 1. 

From (22), using (23), for all c E X,  

(24) 1 lira lim [[Ic +/31J'/,,~ +/32y,lzll + Ilc - (fil~':lm -~ /32yn)l] ] 
~Z --4 O0 n --400 

= aim [l131c + /3 ,x ' . l l  + l131c - 31x;dl]  

+ lira [11/32c + /32y .  + I I&c - &y,~[I]: 

From (24) and the triangle inequality we obtain (20) in the case 31 + 32 = 1. 

To get the general case from this we note tha t  for y E X,/31,/32 C N (not bo th  0) 

we have 
lim lim Y /31 i /:32 11 

,,z-+~ n - ~  31 + 32 + - - - - - ~ 2  x''  + 
- -  ~ Y , z  

/31 + /31 
/31 

m - + o o  ,"~1 -}- '32 \ 3 1  -I- f12 ] /~1 -[- f~2 

32 y + lira ~ ( ~ )  + y'. 
n--+oo  ~ 1  

and (20) follows by mult iplying by 31 +/32. 

(b) We continue the argument  from (a). As in tha t  case we may assume tha t  

Ifl~[ + 1f121 = 1. The  case 3J, 32 _< 0 is covered by (a) using 

' " + 32y~H lira lira ] ] -  y -  31a.,~-fl2Y,,]]- lira lira IIg+ ;~1.~,,, = , s , I 
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Sinfilarly. the only case left to consider is dl > 0 and d2 < O. ~r~ 1)refer to take 

dl .  q2 > 0, dl + 32 = 1 and work with 3l.~ ,, -~2Y,,  • As in (a). we ol)tain from 

the hypothesis  for e E X. 
_ = ~ ' ~ ' liln lira Ildz.r',, .32yi, I1~ lira I1~ ,.",, I1," + lira H' 2Y,, II. 

T M s .  for y E X we get 

- ~y,)ll] lira lira [ l ly+ (~ ,.c,,, : 2u,)ll + IIu - (,~,.,',. - 

- -  linl [Ii~,U + ;. , . , , . ll  + II~,u -3a. , , , , l l ]  

+ lira [l],q2y - ,  2y. II + 1l,~2u + ~2u,, II]. 

Again fl'om the triangle inequality we ol)tain (21) ill this ('ase. II 

We" "return to the pwof  of Theorem 5.5. Suppose tha t  (.rm).,~w and (Y.),,6~, 

are IIll" IIH normalized basic sequences ill X with 

liln lira IllJ.r,, + y,, Ill[ = 2. 
~tl --')" ~ 5  ~ --).,34. 

Assume towards a contradict ion that  X is reflexive. Then (x,.),.¢~, and ( y . ) . ~ ,  

are bo th  wealdy nllll. ~.'e lllay assume tha t  

lira liln 11" +,~,,,,,, + #~.11 

exists for all y 6 X.  o.  d G R (and for all of the norms we have constructed).  By 

Lennna 5.7 we lnav. also ass,uric tha t  se t t ing  -'",,, = .,,,,/111.,',,,111 a11(l :~;, = :~,,/lllu, III. 
t b r y  ~ X and c~, 3 > 0 (not bo th  O) we have 

I I liln linl lily + o. , , ,  + 3v ,  III 

= lilll ~ y  + O.rtm + lilll ,'J j , . 

Thus.  

lim lim Z M I M I v  + o.*,,, + ,3.~,, II + ~ + ~ . ' , ,  + ' y ,  II 
c~C' 

I - -  t 

+ I / l l u + J , ~  + ,  u.ll ( y + o . , m  +,3.~;,)111 
v r  ° ° , 

lira Z..~ Lp¢ c'll--~--~y + ax; , l l  + ~ y  + o.r , ,  
/7/--4*00 

cEC' 
C~ O~ 

+ .-~liln EP~[  c ~-r,~''~Yfl + flY' +~y+fly,,d , , 
cEC' 

3 , ( d + 3 , ~ '  
- ] + C 
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F r o m  this and  the  t r iangle  inequal i ty  we have for all c E X ,  y E X an d  a ,  fl _> 0 

(not  b o t h  0) t h a t  

(25) lira lira IMly + ax',,. +/3y~l I + y + ax',,~ + flY'nll 

Oz C¢ O'X~ = lira c +aX~m + y +  

+ l im c /3 /3 i fl 

Se t t ing  c = y = 0 in (25) yields 

(26) lira lim I I ~ x "  + flY'~II = a "  + .~b, 

Y,JllYnll. -- -- Ily,,~ll. Let  x , ,  = where  el, l imm II.GII and  b l im,  ' " ' "' x.,./ll~.~ll a n d  y "  = ' ' 

T h e n  

lira lira II~x" +/~y,';ll = ~ +/~- 
/TZ ---~ OO 71,--+ OO 

Let t ing  y = 0 and  replacing c by c/(a + fi) in (25), us ing (27), we have 

l im lira " " lllTI ~ aC"~fly~ . Ilc+a.rm+fly. I I = lira a ,, . (28) 
m--+oon--+oo m--+oo O~+/5  '11 n - -~oo  o ÷ p  

We claim t h a t  a = b. Indeed,  let us assume a ~ b. By  (27) we get  

lilnm__+~linln__+c ~ 1 . 1 . ~  ~xm + ~Yn = 1 and  fur ther  we have 

1 ,, 1 ,, 
. } i ~  l irn I lxo + :~ x,~ + ~ yn II = 1; 

see (18). Bu t  f rom (25), t ak ing  y = Xo and  c = 0, we get 

• to 1 ,, 1 ,, x o + l v '  1 , 

1 1 
Ta Xo l r "  ~ x 1 .11 

>1  (for a ¢ b) using (18). 

F r o m  (25) we ob ta in  for all c, y C X and  a ,  fl > 0 (not  b o t h  0), by  replac ing 

a ,  d by o , /a  and  d/o, s ince /3 /5  =/3/a, 

(29) lira lira IMly + ~x',:,. + fly,','ll + y + ~x;~ +/3y;~ll 
TI~ - - +  (X)  n - 4 "  OO 

= lim e,~_+oo ~ Y + f l Y :  + ~ Y +  flY:: " 
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Next, we wish to show that "" (am)me~ and (y,)new generate the same type over 
• I f  Y, i.e., if y e Y, 5 := limm_~¢~ IlY + x",ll and "y := l i m ~ o o  Ily + ymll, then 5 = 7. 

Clearly, 5 = ' ~  = l i f y = 0 ,  s o a s s m n e y # 0 a n d S # 7 .  Let a + / 3 =  1. Now 
from (28) we get, 

I1 I f  I I  
liln lil:n I lY+~ , ,~  +~Y~II ---- lira Ilo'Y+~'rmll + lira II/~Y+/3Y~II 

?D, - - +  (X)  n ---k (X3 T/~l - - k  OC ? l - ' +  0 0  

= a5 + 3% 

Thus, from (29) we get for c C X, c~ +/3 = 1 and a,/3 _> 0, 

II (30) lira lira [[c(a5 +/37) + Y + az,.~ +/3y,~[H 

II 11 
= lim 11(~6)c + ~y + ~xmll + lim 11(/3~)c + z~.y +/3:~.11. 

?~1 - - + O O  ?1 - - + O O  

1 and Let c~ =/3 = 
-1  - 2 y  

c--  ~ + ~ y - - 5 +  7. 

Using this in (30), from (27) we have 

, ,1 ,l 1 ii I lira lim - x , ~ +  = 1  

( ) (~ ) 1 " 1  1 (f 1 . l l  7 y +  
(31) = li~n ~ 57-~ Y + 2 X ' ~ l l + ) i 2 ~  5 + 7  2Y" 

and since 5 # 7, both coefficients of y ~ Y on the right side of (31) are nonzero. 

Therefore, by (19), the right side exceeds 1, a contradiction. 
[ R, fl It follows that l imm_~ l i m n - ~  Nx~ +x~n = 2 and, moreover, ~ . ~ e ~  can be 

substituted for " (Yn)-e,~ in our above equations. So we are in the same situation as 
the proof of Theorem 4.1(c) in [OS982] and it follows that for some subsequence 

1 
a~:~ > ~ if ( a , ) ~  c [0 ,~) ,  ~ a~ = 1. 

i E w  i E w  

Hence, ix" n~ ~e-  is not weakly null and X is not reflexive, which completes the 

proof of Theorem 5.5. | 

THEOREM 5.8: Let X have a basis (bi) i~.  There exists an equivalent norm 

IIIl" Illl o~ x so that if (X, IIll" IIII) admits  III1" IIII normalized b~ock bases of  ( b d ~ ,  

say (Xm)me~ and (Yn)ne~, satisfying limm-+~ limn-~oo IIIIxm + y.llll = 2, the,, X 
contains an isomorph of gl. 
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COROLLARY 5.9: If  X has  a basis and does not contain an isomorph of Q, then 

X call be given an equivalent norm so that if  (e,~),,e~. is any asy'mptotic model 

generated 1~, a block basic arl"a~= then (e,),,e~. is not I-equivalent to the unit 

vector basis of  ~1. 

Proof of Theorem 5.8: The  norm Ill[" 1111 is constructed as in the proof  of Theo- 

rem 5.5 where we begin with X = (b0} +o+ [(bi)]ie~\{0} and (bi)iEw is b imonotone.  

Every th ing  we did in the proof  of Theorem 5.5 remains  valid and, in addition, we 

(Xm)me~ and have the use of (21). It  follows tha t  not only do " (Y~)~E~ generate  
, / !  I1 the same type  over }' ,  bu t  so do (a,,,)mE~ and (-Yn),*e~ and thus, as in the 

case of Theorenl  5.5, the proof  reduces to the s i tuat ion in [OS982]. Hence, some 

subsequence of (.r',~,),,e~ is an (t basis. II 

The a rguments  easily generalize to the case where X is a subspace of a space 

with a basis (b,,),,~e~., and (e , , ) ,e~  is generated 1)y an ar ray  (x}~)n,iE~, where for 

all n, m: 
* ,~2, l im bm(a i ) = 0. 

i--+~ 

6. O d d s  a n d  e n d s  

In this section we first consider some stronger  versions of convergence one might  

hope for but ,  as we shall see, one cannot  always achieve. We also raise a number  

of open questions. 

6.1. COULD W E  GET MORE? There  are very many  possible s t rengthenings of 

a sympto t i c  models  tha t  one could hope for. One such question is as follows: 

Suppose we are given a normalized basic 

there exist a subsequence ( x i ) ~  of (Y~)i~ 

n E co, (bi)ie,,. E [ -1 ,  1]" and e > 0, there is 

j ~ - l ,  N _< k0 < . . .  < k,~_l are integers and 

E b~x(o(ji)'a~) - E 
iEn iEn 

sequence (Yi)ie~ and (ai)ie~.  Does 

with the following property: for all 

an N E co so that if  N <_ jo < . . .  < 
Q E (co) w, then 

bix (Q(k i ) ,  a i) < e?  

Indeed, this is t rue  if for each i E co, a i is finitely suppor ted ,  for one can then 

take ( x i ) i ~  to be a subsequence of (Yi)iE~ generat ing a spreading model  ( e i ) i ~ .  

The  limit will exists ill the above sense (it. will be just  II ~ e n  bifill where (fl)ic~, 

is the normalized block basis of (ei)iE~ determined by the ai 's) .  

In general, however, this is false, even if (Yi)iEw is weakly null and a i = a for 

all i E co and some a. Indeed (ef. [LT77, p. 123]), one can embed  (p + (2 (P ¢ 2) 



288 L. H A L B E I S E N  AND E. O D E L L  Isr. J. Math .  

into a space Y with a normalized symmetric basis (Yi)i~ in such a way that the 

unit vector basis of ~p @ ~2 is equivalent to a normalized block basis of the form 

(y(g(i),a))ic~ where IP(i)l-+ oo and a = (1, 1, 1 . . . .  ). Thus, for appropriate 

Q1,Q2 • (w}~' with IQl(i)l, [Q2(i)[ --+ oc, every subsequence (~'i)ie~ of (yi)ie~ 

contains block bases (x(Ql(i), a))ic~ and (x(Q2(i), a))ie~, which are equivalent 

to the unit vector basis of fp and (2, respectively. 

On the other hand, there are of course variations of our construction of asymp- 

totic models in Theorem 4.3 that. do succeed. For example, given a basic array 

(xi)n,i~w, one might stabilize 

i~Cn h.~.k( i,P)~ k( i'P) vt'" up(i) 

where the row now depends upon i and P • (a~) ~. In this more general setting, 

one has that (el)iCE • {X.} iff there exists a block basic array (X7)n,ie,~ and 

k(i, P),  a~(i)'s, so that the above expression converges (as in Theorem 4.3) to 

Indeed, suppose for example that the tree T2 = {X(mo,m~) : 0 _< m0 < ml} 
,o ,v.1 converges to (el,e2) as in (4.7.3). Let, 2,; x(~),. ; xto,~ ) for i > O, ,.2 m 3. i = X(1,i) 

for i > 1, and so on. (Notice that there is no need to define the first part 

of each row.) Set k(O,P) := 0 and k(1, P)  := j + 1 if nfinP(0) = j ,  and let 
J (1, 0, 0 , . . ) .  Up(i )  :---~ 

One could also relax the conditions defining a b~sic array (x~ ~) by deleting the 

requirement that the rows be/(-basic .  This would yield many more "asymptotic 

models." For example, every normalized basic sequence (xi) in X would be an 

"asymptotic model" of X; take (x~) = (xi) for all n. Proposition 4.5 would also 

hold in this relaxed setting. 

6 . 2 .  O P E N  P R O B L E M S .  

Problem 6.1: X is a s y m p t o t i c  ep (respectively, a s y m p t o t i c  Co) if there exists 

A" so that for all (ei)i~n • {X}n, (ei)i6n is/(-equivalent to the unit vector basis of 

g~ (respectively, ~ )  (see [MMT95]). Assume that there exists K and 1 _< p < oc 

so that  if (el)jEw is an asymptotic model of X, then (ei)i6~ is/C-equivalent to 

the unit vector basis of gv (Co, i fp  = oc). Does X contain an asymptotic fp (or 
%) subspace? The analogous problem for spreading models is also open. 

Problem 6.2: Suppose X has a basis and that there is a unique, in the isometric 

sense, asymptotic model for all normalized block basic arrays. In this case, even 

if one replaces asymptotic model by spreading model, it follows from Krivine's 
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Ttleorem [Kr76] tha t  this unique a sympto t i c  model  is 1-equivalent to the unit  

vector  basis of co or ep for some 1 _< p < oo. Must  X contain an isomolphic copy 

of  this ,space? The  analogous problem for spreading models is known to be t rue 

for the case of co and fl  (see [OS982]). Also the a sympto t i c  s t ructure  version of 

the question is true: if I{x}._,l = 1, then X contains an isomorphic copy of Co or 

Cp (see [MMT95]). 

Problem 6.3: Can one stabilize the asymptotic models  of a space X ?  Precisely, 

does there exist a basic sequence (xi)iE~ in X so tha t  for all block bases (Yi)iew 

of (xi)iE~, if (ei)ie~ is an asympto t i c  model  of some normalized block basic ar- 

ray of (;ri)ie~, then (ei)ie~ is equivalent to an a sympto t i c  model  of a normalized 

block basic ar ray  of (Yi)iEw? We do n o t  even know if there is some basic sequence 

(Xi)iE w and an asympto t i c  model  (ei)iE~ of (xi)ie~ such tha t  every block basis 

(Yi)ie~ of [(.ri)iE~] adnfits an asympto t i c  model  equivalent to (ei)ie~. The  anal- 

ogous questions for spreading models  are open. I t  is known tha t  one can stabilize 

the a sympto t i c  s t ructures  {X},,  for all n E a3 by passing to a block basis (see 

[MMT95]). 

Problem 6.4: Assume tha t  in X ,  every a sympto t i c  model  (ei)iEw of any nor- 

malized basic block sequence is I -uncondi t ional  (this is II ~ +a~e~ll -- II ~ a~e~ll). 
Does X contain an unconditional basic sequence? Does X contain an asymp- 

totically unconditional subspace? (i.e., a basic sequence (:ri)iE~ so tha t  for 

some K < ce and for all n E cv, every block basis (Yi)ie,~ of (xi)ie~\n is K -  

uncondit ional) .  

Problem 6.5: For any space X ,  does there e.xist a finite chain of  asymptotic 

models X = Xo, X1 . . . . .  X,., so that Xi+l is an asymptotic model of  X i  (for 

i E n) and .\'~ is isomorphic to co or fp for some 1 <_ p < oo? The  analogous 

prob lem for spreading models is also open. 

Problem 6.6: For 1 < p < oo, ~ is arbi t rar i ly  dis tor table  [OS94]: Given K > 1 

there exists an equivalent norm II" II oH 6 so tha t  for all X C_ fv, (X, II" II) is not 

K- i somorphic  to Cp. Is this t rue for a sympto t i c  models  as well? Given K > 1 (or 

for even some K > 1) does there exist an equivalent norm II  II o,1 6 so that i f  

(e~)ie~ is an asymptotic model of  (f~, I1" II), then (e~)~e~ is not If-equivalent to 

the unit vector basis of fp ? The  analogue for spreading models  is also open. 

Problem 6.7: I f  X has the property that evel:y normalized bimonotone basic 
sequence is an asymptotic model of  X ,  does X contain an isomorphic copy of  

Co 7 
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