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ABSTRACT

A well known application of Ramsey’s Theorem to Banach Space Theory
is the notion of a spreading model (&;) of a normalized basic sequence
(2;) in a Banach space X. We show how to generalize the construc-
tion to define a new creature (e;}, which we call an asymptotic model
of X. Every spreading model of X is an asymptotic model of X and in
most settings, such as if X is reflexive, every normalized block basis of
an asymptotic model is itself an asymptotic model. We also show how
to use the Hindman—Milliken Theorem—-a strengthened form of Ram-
sey's Theorem—-to generate asymptotic models with a stronger form of
convergence.

1. Introduction

Ramsey Theory, and especially Ramsey’s Theorem, is a very powerful tool in
infinitary combinatorics and has many interesting (and sometimes unexpected)
applications in various fields of Mathematics. Generally speaking, theorems in
Ramsey Theory are of the type that a function into a finite set can be restricted
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to some sort of infinite substructure, on which it is constant. In applications
to analysis we successively apply Ramsev’s Theorem to certain s-nets to ohtain
infinite substructures on which certain Lipschitz functions are nearly constant in
an asymptotic sense (cf., e.g., [0d80] or (HKO, Part I11]).

A well known application of Ramsey’s Theorem ([Ra29, Theorem A]) to
Banach Space Theory is due to A. Bruuel and L. Sucheston (cf. [BS73]). Roughly
speaking, it says that every normalized basic sequence in a Banach space has
a subsequence which is “asymptotically” subsyminetric, ultimately yielding a
spreading model.

There are two main directions to generalize Ramsey’s Theorem. One is in
terms of partitions and another one leads to the so-called Ramsey property.
(Some results concerning the symmetries between the combination of these two
directions can be found in [Ha98].) Both directions are already used in Banach
Space Theory. For example, the fact that Borel sets have the Ramsey property
is used in Farahat’s proof of Rosenthal’s Theorem, which says that a normalized
sequence has a subsequence which is either equivalent to the unit vector basis
of ¢1 or is weakly Cauchy. Further, a combination of both directions is used hy
W. T. Gowers in the proof of his famous Dichotomy Theorem.

In the sequel, we prove a generalized version of the Brunel-Sucheston Theorem
by using Ramsey’s Theorem. We apply this to basic arrays, namely certain se-
quences of basic sequences in X. Also, we show how a generalization of Ramsey’s
Theorem, the Hindman—Milliken Theorem, can be used to construct asymptotic
models with a stronger form of convergence.

The object we obtain, a basis (e;);c,, for some infinite dimensional Banach
space E, we call an asymptotic model of X. Asymptotic models include not only
all spreading models of X, and even in many cases all normalized block bases of
such, but more general sequences as well. If the sequences in the generating basic
array are all block bases of a fixed basis or are all weakly null, then the notion
lies somewhere between that of spreading models and asymptotic structure (see
[MMT95]), although it is closer in flavor to the theory of spreading models. The
construction we use to get an asymptotic model has been used in the past by
several authors to study spreading models and the behavior of sequences over
X (e.g., [Ro83], [Ma83] and [AOST]). In particular in [Ro83] the concept of an
oo-type over a Banach space is introduced and this actually contains within it the
notion of an asymptotic model. But our more restricted viewpoint in this paper
is the first study of what we have chosen to call “asymptotic models” themselves.

In Section 3 we recall the Hindman-Milliken Theorem. In Section 4 we define
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and construct asymptotic models. In addition, we malke a number of observations
about asymptotic models and their relation with spreading models and asymp-
totic structure. Section 5 generalizes some results of [0S98;] to the setting of
asymptotic models. Section 6 concerns some stronger versions one might hope
to have but, as we show, one cannot achieve in general. In this section we also
raise sonie open problems.

For the reader’s convenience, we recall some set theoretic terminology we will
use frequently. A natural number n is considered as the set of all natural nuinbers
less than n. in particular, 0 = §. Let w = {0,1,2....} denote the set of all natural
numbers. By the way, we always start counting by 0. Some more set theoretic
terminology will be introduced in the following section.

The notation concerning sequence spaces is standard and can be found in
textbooks like [Di84], [Gu92] and [LT77]. However, for the sake of the non-
expert, we recall some definitions.

A sequence (&;);e., it a normed space is normalized if for all i € w,

il = 1,
and it is seminormalized if there exists an M with 0 < M < oo such that for
all i € w, 1/M < ||&;]] £ M. If (2;)ien 1 a sequence of non-zero vectors in a
Banach space X, then (2;);c. is basic iff there exists C' < co so that for all
n < m and (¢;)iem C R, || Zien aitl] < Cl e @ivill- The smallest such '
is called the basis constant of (#;);ec. and (2;);e, is then called C-basic. The
basic sequence (r;);e., is monotone basic if it is 1-basic, and it is bimonotone
if it is monotone and the tail projections are monotone as well (i.e., I — P, has
norm one if P, is the nth initial projection). If (;);c. is basic, then every 2 in
the closed linear span of {;);e., can be uniquely expressed as ), a;x; for some
(ai)ice © R. Basic sequences (;)ic,, and (y;)ie. are C-equivalent if there exist
constants A and B with AB < (' so that for all n € w and scalars (a;)ien

Z(L,;.zt.; Z €Y H <B Z il

i€en iEn i€En

A7t <

For a basic sequence (x;);¢c,, and scalars (b)),c.,, a sequence of non-zero vectors

(yj)jew of the form
Pe+1—

1
vi= Y b

{=py
where pg < p1 < --- < pp < --- is an increasing sequence of natural numbers, is
called a block basic sequence or just a block basis.
A basic sequence (;)ie. is called boundedly complete if, for every sequence

of scalars (a;)ic., such that sup, || >, aix;|| < oo, the series )~ a;x; con-

1Ew
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verges. A basic sequence (;);e, is unconditional if for any sequence (¢;);e,, of

scalars and for any permutation 7 of w, i.e., for any bijection m: w — w, Ziew a;r;
converges if and only if ), cw ()T () cOnverges. A non-zero sequence of vectors
(@;)icw 1s unconditional basic iff there exists C' < oo so that for all n € w,
gi = *1 and (ai)ien SR |12 ¢, sitiill < O3 1e, @iill. The smallest such C

is the unconditional basis constant of (z;).

A normalized basic sequence (2;)ie. is C-subsymmetric if (2;)ic. is C-
equivalent to each of its subsequences (notice that we do not require it to be
unconditional which differs from the terminology of [LT77]).

For a set of vectors 4, (A) denotes the linear span of A and [A] denotes the
closure of the linear span of A. Note that if the normalized basic sequences
(®1)icw and (y;)iew are C-equivalent, then the spaces [(x;)ic,] and [(yi)iew] are
C-isomorphic.

The dual space of a Banach space X is denoted by X*.

*

Suppose that (2;);cw 18 a basic sequence. For each a* in [(2;);c.]* and each
n € w, let [|2*]|() be the norm of the restriction of »* to [{x; : i > n}]. Then
(¥i)iew is shrinking if for each a* € [(@))iew]™ Iy o0 |0y = 0.

If ¥ is a normed linear space, By denotes the closed unit ball of ¥ and
Sy is the unit sphere. In the sequel, X will always denote a separable infinite

dimensional real Banach space.

2. Special partitions

Let w+1:= wU{w}, so if n € w+1, then 5 is either a natural number or n = w.
If x is a set, we write || for the cardinality of x. We will use w also as a cardinal
number, namely w = |w|. If  is a set and 7 € w+ 1, then

[F]":=={yCa:lyl=n} and [2]<":={yCa:|yl <9}

If a,b C w, we write @ < b in place of *for all n € « and m € b, n < m”. Note
that a < b implies a € [w]<*.

A partition P of set S is a set of non-empty, pairwise disjoint subsets of S
such that |JP = S. For a partition P, the sets b € P are called the blocks of P.

In the following we consider “special™ partitions of subsets of w.

If P is a partition of some subset of w. then P is called a special partition,
if for all blocks @, b € P we have either @ < b, or a = b, or @ > D.

Notice that if P is a special partition with infinitely many blocks, then all of
its blocks are finite.
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For 1 € w+ 1, let (w)” denote the set of all special partitions of subsets of
w such that |P| = ». In particular, {(w)* is the set of all special partitions with
infinitely many blocks.

Let Py, P, be two special partitions. We say that P is coarser than P, or
that P, is finer than P;, and write P, C P, if each block of P; is the union of
blocks of P;.

For a special partition P and n € w+ 1 let

(P)":={Q:QC PA|Q|=n}.

If P is a special partition and b € P, then min(b) := [} b denotes the minimum
of the set b. If we order the blocks of P by their minimum, then P(n) denotes
the nth block with respect to this ordering.

If Py, P, are two special partitions, then we write Py C* Py if thereisan n € w
such that

(P1 \ {Pl(l) 1€ n}) C P

In other words, Py &* P, if all but finitely many blocks of P; are unions of blocks
of PQ.

Fact 1: If P*d P*d P*3---*3 P*0 - - - where P; € (w)¥ (for each i € w),
then there is a special partition P € (w)* such that for each i € w, P C* P;.
(The proof is similar to the proof of Fact2.3 of [Ha98].)

3. The Hindman—Milliken Theorem

First. we recall the well-known Hindman Theorem. and then we give Milliken’s
generalization of Hindman's Theorem.

If 4 € [w]<¥. then we write 3 A for )~ , a, where we define 3°0 := 0.

In [Hi74], N. Hindman proved the following.

THEOREM 3.1 (Hindman's Theorem): If m is a positive natural number and
frw — m is a function, then there exist r € m and x € [w]* such that whenever
A € [x]<¥ is non-empty. we have f(>" A) = .

R. Graham and B. Rothschild noted that Hindman's Theorem can be formu-
lated in terms of finite sets and their unions instead of natural numbers and their
sums. This yields the following.

THEOREM 3.2 (Hindman's Theorem (Set Version}): If m is a positive natural
number. [ € [w) and f: [I|<% — m is a function. then there exist r € m and
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an infinite set H C [I]<% such that ¢ N'b = § for all distinct sets a.b € H. and
whenever A € [H]<“ is non-empty. we have f(J4) =r.

Using Hindman's Theorem as a strong pigeonhole principle, Ix. Milliken proved
a strengthened version of Ramsey's Theorem, which we will call the Hindinan—
Milliken Theorem (cf. [Mi75, Theorem2.2]). The Hindman-Milliken Theorem in
terms of unions can be stated as follows:

THEOREM 3.3 (Hindman-Milliken Theorem (Set Version)): Let m.n be positive
natural pumbers, Q € (W)Y and f: (Q)" — m a function. Then there is an
P € (Q)¥ such that f is constant on (P)".

As consequences of the Hindman-Milliken Theorem one gets Ramsey’s
Theorem (Theorem A of [Ra29]) as well as Hindman's Theorem (cf. [Mi75]).

4, Asymptotic models

First we recall the notion of a spreading model. If (2;);c., is a normalized basic
sequence in a Banach space X and ¢,, | 0 (a sequence of positive real numbers
which tends to 0). then one can find a subsequence (y;)ie, of (47)icw such that
the following holds: For any positive n € w, any sequence (ay)ren € [—1,1]" and
any natural numbers n <ig < -+ <ip-y and n < jy < -+ < Jp—y we have

Z L Yi, ) Z @kl ji

ken kEn

< &p.

This is proved by using Ramsey’s Theorem iteratively for a finite d,-net in
the wnit ball of (7, (4, depends upon ¢,) to stabilize, up to 4,, the functions
Flioe .. vin1) = | X4, @iil] over a subsequence (yi)ie. of (¥)ien for each
(@i)ien in the d,-net. Thus, one obtains a limit. ||}, a:€;fl, for cach finite
sequence (a;);cp of scalars. The sequence (é;);¢,, is called a spreading model of
(y:)iew: (€1)icw is a normalized 1-subsynmetric basis for E. the closed linear span
of the é;'s, and E is called a spreading model of X generated by (&;);c,,. Hence,
for any natural numbers jo < -+ < j,— we have ||}, @;é;ll = [|3;¢, @€, |-
If (yi)iew is weakly null, (&;);e. is suppression-1 unconditional: || 3¢ p ;€| <
| 2 i @i€ill for all F C w and each sequence (ai)iew of scalars. These facts can
be found in [BL84] or [Od80).

Before presenting our extension we set some notation.

We shall call (x7), e a N-basic array in X if, for all n € w, (2})ic0 is
a K-basic normalized sequence in X and, moreover, if for all m € w and all
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integers m < ig < -+ - < Iyy_1. EVETY Sequence (1{1 )jem is K-basic. Furthermore,
(¥} )n.iew i a basic array in X if it is a A-basic array for some I < oo.

If X has a basis (x;);en then (@7'),.e. is a block basic array in X (with
respect to (;)ie.) if, in addition, each row (x1);e, is a block basis of (¥)iew
and all sequences (.r{j )jem as described above are also block bases of (¥;)ie..

In what we present, the only important part of the array is the upper triangular
part: {&] :n € wandi > n}. The lower triangular part can be ignored or omitted
and we shall often do so.

ProprosiTiON 4.1: Let (&')y.ie be a IN-basic array in some Banach space X.
Then given =,, | 0. there exists a subsequence (ky)neo, of w so that for alln € w,
(biYien € [-1L1]", n <idg <+ <ip_qgandn <o <+ < 1.

o o
E bjx T E bja e
J M

jen JEN

‘ <&y

Proof:  As in the case of spreading models, this follows easily from Ramsey’s
Theorem and the standard diagonalization argument. One ¢, /2-stabilizes
flioe - vin—1) == || Zjen bja i || over all subsequences of length n on some sub-
sequence of w for each of finitely many (b;);en € [~1,1]" out of some d,-net in
B(’” - .

oo

If the conclusion of the proposition holds for (47 ), .iew. where y* = ag,. then

the iterated limit. lim, o« iy, oo |35, bjy{] ||, defines a norm on ¢po.
the linear space of finitely supported real sequences on w. We let E be the
completion of cgy under this norm. The unit vector basis (e;);e., thus becomes
a I-basis for E. We call (e;);e,. or E an asymptotic model of X generated by
(Y )n.iew-

If (a1, sew is a basic array and ig < iy < --- then (y}7 )i jews Where Yy = 11’] is
called a subarray of ('), ;c.,. Propositiond.l says that every basic array adinits
a subarray which generates an asymptotic model. Also, clearly, if (y7')n.icw
generates (€;);e.. then every subarray of (y'),.icw generates (e;) as well.

We shall have occasion to use the following simple lenmina.

LeMMA 4.2: For each n € w let (a');e,, be a normalized sequence in a Banach
space X. If either

(a) each (27)ie. is weakly null or

(b) each (x})ie. is a block basis of some basic sequence (v;)ic, in X,
then the array (x}), e, admits a basic subarray (y!'),.icw. If (a), then given
£ > 0. (y')n.icwe can be chosen to be a 1+ e-basic array. If (b). (y?)n.icw can be
chosen to be a block basic array of (¥;)ie. -
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Proof: To prove (b) we need just choose the subarray (y7)n ;e0 80 that for all
neEw, jeni€n+l, max(supp(yf;_l)) < min(supp(y’)) where, if y = 3" a;2;,
then supp(y) = {i : a; # 0}. (a) is proved by a slight generalization of the
proof of the well known fact that a normalized weakly null sequence admits a
1 4 e-basic subsequence. One takes <, | 0 rapidly and then chooses the column
(% )iew so that |f(y8)| < en for i € n+1 and each f in a finite 1 + &,-norming
set of functionals of B(y{:i,jén)' ]

We will call a basic array (z?) whose rows, (z0);cw, are all weakly null a
weakly null basic array.

If (e;)icw is a spreading model of X generated by the basic sequence (x;);e.,
then clearly (e;);e,, is an asymptotic model of X as well (generated by (27)n.icw
where z7 = x; for all n,7 € w). A block basis of a spreading model need not be
a spreading model; however, this is not usually the case for asymptotic models.
But first we introduce some new notation and a new stronger way of obtaining
asymptotic models.

A basic array is a strong I{-basic array if, in addition to the defining condi-
tions of a K -basic array, for all integers m < ip < i1 < - -+ < i1, €VEry Sequence
of non-zero vectors (y;)jem is I-basic whenever y; € (24 : i; < s < i;41). Note
that the proof of Lemma 4.2 actually yields that one can choose the subarray
(y?)n.icw to be strong basic.

Let (2?)n,iew be a strong basic array. Given m € w, a finite set of positive
integers F' = (ig,41,...,9n—1) With ig < -+ < 4,1, and a (possibly infinite)
sequence a = (ag, a1,...) of scalars of length at least n with a; # 0 for some
i € n, we define

2™ (F.a):= Ljen T .

I Z_;’en “jI'iT?”

THEOREM 4.3: Let X be a Banach space and let (x}!)y. ie., be a strong K -basic
array in X for some I < oo. For i € w and each non-empty finite set of integers
F={ig,....in_1} withig < -« <iy_q, let a’ip be a (possibly infinite) sequence
of scalars of length at least n and not identically zero in the first n coordinates
and let ¢, | 0. Then there exists a special partition P = {P(k) : k € w} € (w)*
such that the following holds: For all positive n € w and (b;)ien € [—1,1]" and
s,t € (P)" with min(s(0)), min(t(0)) > n we have

Zbiri(s(i),a;(i))H— Zb.,-.ri(t(i).a;'(i))’

iEn i€n

’<€n.

Proof: The theorem follows from the Hindman-Milliken Theorem the same
way that one obtains a subsequence of a given basic sequence (2;);e,, yielding a
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spreading model via Ramsey’'s Theoremn: Given finitely many sequences (b;)ien €
[-1,1]", a d,-net in Ben (the unit ball of €7},) for an appropriate d,,. and a special
partition P € {(w)*, then one can find @ € (P)¥ so that for all t,7 € (@)™ we
have

Zbl 7(L)

i€n

(%) ]

> bi'(t(i). 2y, H

i€En

H < 4.

One then uses standard approximation and diagonalization arguments to con-
clude the proof (see Fact 1).

Indeed, given (b;);en and a special partition P € (w)*, we partition the interval
[—n, n] into say m disjoint subintervals (I;);em. each of length less than 4,,. Given
t € (P)Y", we let

f(t) := j if and only if

iEn

An application of the Hindman-Milliken Theorem yields @ € (P)¥ so that (x)
holds for all ¢, € (@Q)". We repeat this for each (b;);en. For an arbitrary
(¢i)ien € [-1,1]" one chooses (b;)ie, from this d,-net with |¢; — b;| < d,, (for all
i € n}. Hence, for t,r € (Q)",

IZCL t at(l H ch ,(L)

en i€n
‘ Zr, at(l - Zbim"’(t(i +Zb X at“ )H
i€En i€n ien
S et ) = X b )+ 3 b 10 |
en {En 1EN

which, by the triangle inequality, is

<Z|(z = bil]l+! at(z i
i€n
| b e H -

ten

+ 3l = bl (@), 3 i)

i€n
<'3?(5n + 671, + 77'(571 < &nn

S b (r(ial ) |

iEn

provided &, < e,/(2n+ 1). ]
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Remark 4.4: One obtains as a limit a norm on ¢qq (the linear space of finitely

| Z'ielf bjf','

supported sequences of scalars),

|. where (¢;)ic, is the unit vector
basis for cqg.

We say that (e;);c., is a strong asymptotic model generated by the strong
basic array (xl)y.ic.. the special partition P € (w)*¥ and the set of sequences
{al : i € w. F € [w]<¥}. In this case, it is also easy to see that (e;);e. is an
asymptotic model of X generated by the basic array (y)')n.ie.. where

yi = 2" (P(i),ap) forniiew.

Thus. asymptotic models can be generated by a stronger type of convergence.
We do not have an application for this. However, it could prove useful in attacking
some of the problems in Section 6: those of the type where the assumption is
that every asymptotic model is of a certain type.

We note several special cases of strong asvmptotic models (e;)ie,, generated
by (7 )n.icws P € (w)* and {ak 1 i € w. F € [w]<¥}.

(4.4.1) Let (x;)iew be a normalized basic sequence in X and set 27 = »; for
all n,i € w. Let aj. = (1,0.0,...) for all i € w and F € [w]<*. Then (€;)ic, i a
spreading model of a subsequence of (¥;);eu-

(4.4.2) Let o7 = a; for all n,i € w, where again (;)ie, is a fixed normalized
basic sequence in X. For i € w let a' be a not identically zero sequence of scalars
and set al. = a' for cach F € [w]<¥. (The non-zero condition is technically
violated here, but we can assume that for some Q € (w)*, a& (j) Is not identically
zero in the first |Q(j)| coordinates if i < j and use the theorem to choose P €
(@)*.) In this case we shall say that (e;);c., is a strong asymptotic model of
(¥;)ie. generated by P and (a')e,.

(4.4.3) Assume that we are in the situation of (4.4.2) with in addition a’ = a
for all 7 € w and some fixed a. Then we will say that (e;);e, is an strong
asymptotic model of (v;);c., generated by P and a. In this case, (€;);c. I8
also a spreading model of a normalized block basis of (;)icw-

Indeed, for cach i € w let y; = x(P(i).a); then (y;)icw is a normalized block
hasis of (x;)icw. Also, from the definitions, given n € w and (b;);en € [-1.1]",

Z biy;, Z bie;

ien i€En

<éen.

provided that # < jg < ++» < jn—1. Thus, (€;}ie. is a spreading model of (y; }iew-

(4.4.4) If (e;) is an asymptotic model generated by the strong basic array
(x)n.icw» then (e;) is a strong asymptotic model generated by (x7), P and (aj)
where P(i) = {i} and each a}{ = (1,0,0....).
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PROPOSITION 4.5: Let (¢;);e. be an asvinptotic model of X generated by the
basic array (x?). Suppose (') is either a weakly null array or a block basis
array (w.r.t. somce basic sequence in X'). Let (f;)ic,. be a normalized block basis

of (¢;)ics. Thent (f;)ic. Is also an asymptotic model of X.

Proof:  Let (%), .ic. generate (¢;)ie.. Choose @ € (w)* and a''s such that for
every i € w, |Q(i)]is equal to the length of a’ and f; = e¢(Q(i),a’). We shall define
a new N-basic array (y!' )y icw Which asymptotically generates (f;);e,. Fori € w
let & be the ith diagonal of the array (1), ;ew. s0 &; = (2%, 20} ... i)
As before, let ¥;(F, a) be defined relative to this sequence. For n,i € w let 2} =
Fi(Q(n).a"). By passing to a subarray of ('), ;c., we obtain, as in Lemmad.2,
an array (y¥)n.ie. which is K-basic and asymptotically generates (f;)ie,- ]

Remark 4.6:  The proposition is false in the general setting. The problem with
the proof is that the rows of (y!' ), ic. need not be uniformly basic. We sketch how
to construct a space X admitting an asymptotic model (r;);c,, for which some
normalized block basis (#;)ic. of (5)icw 18 10t an asymptotic model of X', First
we define a norm on [(#;);en] where (@), is a linearly independent sequence
in some linear space. Let n; 1 oo rapidly and let (E(i));c. be a special partition
of w with |E(})] = n;. Set for o = 3" a;x. [l = max(||(a)ey. WEsxlle; )7+ )s
where E;x is the restriction of » to E; and T* is the dual norm to Tsirelson’s
space T. (¥;)c. is an unconditional basis for the reflexive space [(r;);e,]. Let
yi = ﬁ > jer Uit Then (y;)ie. 15 a normalized block basis of (r;);e,, which is
ectuivalent to the unit vector basis of T*.

Let X = [()iew] Foc (O (1)es. Let 7 = ; 4+ € where (el )i, is the unit
vector basis of the nth copy of ({ in (3" (1)¢,. Then (x¥), ;c. is a basic array
and generates the asymptotic model (+;);e,. It can be shown, however, that
(¥i)iew is not an asymptotic model of X. The basis (2;);c. U (€1), e for X
is boundedly complete and unconditional and thus by passing to a subarray we
may assume that y?' = =z, +w} where 3, € X and ()¢, Is a seminormalized
block basis of the basis above, in some order, for X.

If P is the natural projection of X onto (3~ ()¢,. there must exist m so that,
passing to another subarrary. inf,»,, inf;>, ||[P(w})]] > 0. Otherwise, a subse-
quence of (y;)ie. would be generated by a block basis array of (;);e. which is
impossible. It then follows that (y;);c., must dominate the unit vector basis of
(2 due to the structure of (3 (1),. Again, this is false.

It is always true, however, that a normalized block basis of any spreading model
of X is again an asymptotic model of X. The difficulty of choosing (y7 )y ic to
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be a basic subarray (in the proof of Proposition4.5) disappears in this instance.

We next collect together a number of remarks and propositions concerning
asymptotic models.

Observation 4.7: (4.7.1) It is not true in general that an asymptotic model
(e;)icw, Of a basic sequence (2;)ie. (as in (4.4.2)) will be equivalent to a block
basis of some spreading model of X, even if X is reflexive.

Indeed, consider X = (3 {2)¢,, with 2 < p < co. The only spreading models
of X are ¢, (isometrically) and (> (isomorphically). This is well-known and easily
verified. Letting (e!);e,, be the unit vector basis of the “nth copy” of ¢ in X,
we can order the unconditional basis {€/),.;e, for X as follows:

(e3.€9, e, €3, el, el €3, e3, €2 e, .. ).

Take P(0) = {0}, P(1) = {1,2}, P(2) = {3,4,5}, P(3) = {6,7,8,9}, .... Then
this basis along with P = {P(i) : i € w} € (w)* generates a strong asymptotic
model (e;);c for the sequence of a'’s defined as follows. Let n; be positive
integers increasing to oo and take a’ = a* = ... = a" = (1,0,0,0,...), am*t! =
e — an0+711 — (0’ 1,0,0, .. ‘)’ ano+n1+1 —_ .= ano+n1 +na _ (0‘ 0’ 1, 0, . .), etce.
Then (e;)icw, as is easily checked, is the unit vector basis of (3 (5*)¢,, which is
not equivalent to a block basis of any spreading model in X.

(4.7.2) One can slightly change the space in (4.7.1) to obtain a reflexive space
X and a strong asymptotic model {e;);e., which is both not equivalent to a block
basis of a spreading model nor does E = [(;);e.,] embed into X. The same sort of
scheme as presented in (4.7.1) works for X = (3~ T)s,, the £ sum of Tsirelson’s
space T (see [FJ74]). The only spreading models of this space are all isomorphic
to ( or fy. For, if P, is the norm 1 natural projection of X onto the “nth copy”
of T in X, and (2;);c. is a normalized basic sequence in this reflexive space, then
passing to a subsequence we may assume either: for all n, lim;_, || P,x;|| = 0,
in which case, by a gliding hump argument, (2;);e., has {, as a spreading model;
or: for some n, lim; o ||P,ai]| > 0, in which case (r;);e., has a subsequence
whose spreading model is isomorphic to ¢;. Now. if we use the basis ordering of
(4.7.1) and the same P(i)'s, and take the a''s to be such that for each sequence
(0,0,...,0,1,0,0,...), infinitely many a’’s are equal to this sequence, then we
obtain ()" €))¢, as a strong asymptotic model. This does not embed into X.

(4.7.3) Spreading models join the infinite and arbitrarily spread out and finite
dimensional structure of X. Another such joining is the theory of asymptotic
structure developed by B. Maurey, V. Milman and N. Tomczak-Jaegermann
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(see [MMT95]). In its simplest form this can he described as follows. Suppose
X has a basis (@;);e.. For a positive n € w, a normalized basic sequence (e;)ien
belongs to the nth-asymptotic structure of X, denoted { X },,. if for all « > 0, given
Mmo € w there exists yo € Sy

S((J'l)rEw\ml ).
that (y;)ien is (1 +&)-equivalent to (€;)ig,. (Here, Si(.))

icwrmg)® 50 that for all m; € w there exists yy €

.. 80 that for all my,_; € w there exists y, 1 € Sy SO

-I'i)iEw'\m n—1 ) *
y denotes the unit
J

i€w\m
sphere of the linear span of {&; : i € w\ m;}.)

One difference hetween this and spreading models is that spreading models are
infinite. However, one can paste together the elements of the sets {X'},, as follows.
{e;)72, is an asymptotic version of X if for all n, (¢;)7_; € {X}, [MMT95].
But certain infinite threads are lost nonetheless. Furthermore, spreading models
arise from “every normalized basic sequence has a subsequence...”. {X}, can
be described in terms of infinitely hranching trees of length n. The initial nodes
and the successors of any node form a normalized block basis of (r;)ie,. We can

label such a tree as Ty, = {1 (g.me) 1 0 < mg < -o- <y, b € n} ordered by

ro < g if the sequence a is an initial segment of 3. Then (¢;);en € {X,} iff
there exists a tree T, so that for all ¢ > 0 there exists ng so that if ng < mg <

coo <oy, then (g ne))ken 18 14 s—equivalent to (e;);e,. This stronger

structure yields in some sense a more complete theory than that of spreading
models where a number of problems remain open. The theory of asymptotic
models generated by block hasic arrays. while being closer to that of spreading
models, lies somewhere between the two. The theory and open problems of
spreading models and asymptotic structure motivate some of our questions and
results helow.

Further, it is clear that if .\ has a basis {@;)iew and (¢;)ie. 18 an asymptotic
model of X generated by a block hasis array (w.r.t. (r;)ien). then for all n,
(¢i)ien € {X}n'

(4.7.4) Suppose that X has a basis and that all spreading models of a nor-
malized block basis are equivalent. Must all spreading models be equivalent to
the unit vector basis of ¢o or {,, for some 1 < p < oc? This question, due to
S. Argyros, remains open. Some partial results are in [AOST]. The analogous
question for asymptotic models has a positive answer.

Indeed, suppose that all asymptotic models of all block hasis arrays of X
are equivalent. If (¢;);c. is a spreading model of such a space, then all of its
normalized block bases, being asymptotic models by Proposition4.5, must be
equivalent and the result follows from Zippin's Theorem (see [Zi66] or [LT7T,
p. 59]).
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(4.7.5) If X is reflexive and (e;);e,, is an asymptotic model of X, then (e;);e.,
is suppression-1 unconditional. More generally, this holds if (¢;);e., is generated
by (27 )n.iew Where, for each n € w, (27);e, is weakly null.

The proof is very much the same as the analogous result for spreading mod-

n T ) A7, , o
els. Let (b;)ien € [-1.1)" and ip € n. We need only show HZ,-E”\{,-O}I),P,H <
1w el |

Let m > n. Since (.1'}” )jew 1s weakly null there exists a convex combination of
small norm: || 32 cptin i 4pll < € For p € k we consider the vector

n—1
T E e o § o
Yp = bl'l m+i + 1),0.1 m-ig+p + bl'l mk+ic
i€lg i=ig+1
12 sen bieill = [1pll] < = and so
E CpYpll < § bieil| + cm:
pER i€n
but also
E Cplp > \ § bie;|| —m — |bi0|5m
ien

pek i#ig

and this yields the desired inequality.

(4.7.6) In general, the nth asymptotic structure {X}, of a Banach space X
with a basis (r;)ie, does not coincide with {{e;);en : (€j)icw is an asymptotic
model generated by a block basis array of (¥;)ic.}- In fact, these may be vastly
different for every subspace of X generated by a block basis of (;);e.-

To see this we recall that Th. Schlumprecht and the second named author
in [0S99, Section3] constructed a reflexive X so that (y;)ien € {X}n for all
normalized monotone basic sequences (y;)ien. Since this includes the highly
unconditional summing basis (of length n) the claim follows from (4.7.5).

(4.7.7) It is possible for a space X to have ¢; as an asymptotic model yet no
spreading model of X is isomorphic to ¢, nor to g or any (, (1 < p < o).

Indeed, the reflexive space X constructed in [AOST] has the property that no
spreading model is isomorphic to ¢, (1 < p < 00) nor cg. Yet every spreading
model of X contains an isomorphic copy of ¢;.

(4.7.8) There exists a reflexive space X for which no asymptotic model contains
an isomorphic copy of ¢g or €, (1 < p < oc).

X is the space constructed hy Th. Schlumprecht and the second named author
in [0S95]; we recall the example: || - || is a norm on ¢gq satisfying the following
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implicit equation:

ol o= o {3 B, ) W}.

hEw

where |||, = Sup{f—(}m Yien, Bl + Eq < -0 < Ep i}y flu) =
log,(1+ ny) and (1) ke 1S a sequence of positive integers satisfying

3 11
= flng)y ~ 107

X is the completion of cog under this norm. The unit vector basis (u; )i, of oo
is a l-unconditional basis for X and X is reflexive. The fact that X' does not
admit an asymptotic model (e;);¢., equivalent to the unit vector basis of (; (and
hence, by Proposition 4.5, no asymptotic model F contains (1) is similar to the
proof in [0S95] that no spreading model is isomorphic to (1. and so we shall only
sketch the argument.

Suppose that (e;);e,, is an asymptotic model of X and is equivalent to the unit
vector basis of £;. We may assume that (e;);ec.. is generated by the basic array
(@) iew Where each (1) ;¢ is a normalized block basis of (u;);e,,. By iteratively
passing to a subsequence of each row (a7);e,, and diagonalizing, we may assume
that (\\.xr?\\m) e, converges weakly in By, as j = oo to a” € By,. Counsidering
the sequence (a"),e,, C By, and passing to a subsequence of the rows. we may
assume that (a"),e, converges weakly in By, to some a € By,. This corresponds
to passing to a subsequence of (€;);c., but that is still equivalent to the unit
vector basis of ¢ and so we lose nothing here. Thus, we are in the situation
where the limit distribution in (5 of the nth row (2});e,, is a” and therefore we
can assume (|2} ||n; )jew n €2 is equal to a™ +h}', where (h);c,, is weakly null in
(5. Furthermore, a® = a + h™, where h" is weakly null in €5 and hence, we may
assume, a block basis in €. In this manner, for any N and (b;);eny € [—1, l]N we
have || 3" biedll = | 20 e p i |l provided N < ko < -+ < kn_y.

Now we can also assume that ||,y bie;f| > 0.99- 3", [b;|. This is because
¢y is not distortable (see [Ja64]) and every block basis of an asymptotic model of
X is {(by Proposition 4.5) also an asymptotic model. Thus, by carefully choosing
the k;’s, we have 0.99- 3", v [bi] < [| 32 en bia}, || where (||}, e, ~a’+hi+hj
and the vectors (h* + h;. )Jien are a block basis in 5. At this point, we use the
argument in Theorem 1.3 of [0S95] to see that, if N is sufficiently large depending
upon a, this is impossible.

Furthermore, the arguments of [0S95] apply easily to show that it is not
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possible to have an asymptotic model (e;);¢. equivalent to the unit vector hasis
of ¢p or €, (1 < p < o0), which completes the proof of (4.7.8).

{4.7.9) The proof of (4.7.8) actually reveals that no spreading model of an
asymptotic model of X can be isomorphic to (; (or ¢p or any (,). For if
E = [(ei)iew] is an asymptotic model of X, then any spreading model of E
is necessarily a spreading model of a normalized block basis (fi)icw of (€i)icw
and this in itself is an asymptotic model of X. Let (é;);c. be the spread-
ing model of {f;}ic,- The proof shows that, for sufficiently large N, we can-
not. have || 37,y bifi,ll = 0.99 - 3o bi] for all (b;)ien € [-1.1]Y and any
ko< - <kn-1.

(4.7.10) G. Androulakis, the second named author, Th. Schlumprecht and
N. Tomczak-Jaegermann have constructed [AOST] a reflexive Banach space X
for which no spreading model is reflexive, isomorphic to ¢y or isomorphic to
{1. However, every X admits an asymptotic model which is either reflexive or
isomorphic to ¢ or 4.

Indeed, X admits a spreading model E with an unconditional basis and, by
[Ja64], E is either reflexive or contains an isomorphic copy of ¢y or 1. So the
result follows by Remark 4.6.

There is a big difference between considering all asymptotic models of X and
of those generated by weakly null basic arrays or block basic arrays as our next
proposition illustrates. Also, it illustrates again the difference between the class
of spreading models and asymptotic models: if (e;);e, s a spreading model of
o, then (e;);e. 1s equivalent to either the summing basis or the unit vector basis
of ¢q.

PROPOSITION 4.8: Let (e;);¢., be a normalized himonotone basic sequence. Then

(€i)icw Is 1-equivalent to an asymptotic model of cg.

Proof: Let ¢ | 0. For all positive integers k there exist n;, € w and vectors
(2¥)iex € Syni s0 that

(1 - EA‘)

E (L,‘,.’l’?“

i€k

E ;€5

i€k

E a;e;

i€k

< <

for all (a;)ier € RF. Indeed, we choose (ff)ien, C Bie.)ico]» 50 that
supien, [fF(€)] > (1 = cp)e|l for € € [(e;)iex] and ff(e;) = 1 for i € k, and
let a¥ = T%e¢;, where T* : [(e;)ier] — ("% is given by T*e = (f(€))ien, -

We write ¢ = (Y (7)., and regard (2¥);¢, as being contained in the indicated
copy of £+ C cq. Let (y{")ke“izk be defined by y? = a{+-- '+.T6+1 and in general

: k+1 i+1
yh=ay Tt ot
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It is casy to check that (y¥)i.iec. is a basic array (the rows are equivalent to
the summing basis) and this array generates (e;);c.. ]

Remark 4.9: Recall [DLT00] that a basic sequence {r;);e. is said to be asymp-
totically isometric to ¢y, if for some sequence ¢, | 0 for all (@, )new € co.

5 Unly

Sll])(l b 37;)|“n| <
n new

< sup |ayl.
n

In this case the proof of Proposition 4.8 can be adopted to yield that [(2:)ie.]
admits all normalized bimonotone basic sequences as asymptotic models. In
general. using that ¢q is not distortable [Ja64], one has that if X is isomorphic to
o then for all k' > 1 there exists C'(IV) so that if (e;);e,. 1s a normalized N -basic
sequence, then X admits an asymptotic model C'(K)-equivalent to (e;)ie,,. We
do not know if the conclusion to Proposition 4.8 holds in this case. We also do not
know if this property characterizes spaces containing ¢ {see the open problems
in Section 6). By way of contrast it is easy to see that all asymptotic models of
[, (1 < p < o) are l-equivalent to the unit vector basis of (,,. Moreover, we have

ProrosITION 4.10: If (¢;)ien Is an asvmptotic model of {7 then (e;);e, is
equivalent to the unit vector basis of (4.

Proof:  Let (21),.ic.. be a IW-basic array generating (e;);c,,. Since each row is
K -hasic there exists & > 0 so that for all n,m € w there exists & € w with
NP™ ()| > & for i > k where P™ is the tail projection of (1, P"(a;) =
(0,...,0,Gn. @myi,.-.). Using that the unit vector basis of 1 is boundedly

complete we can find a subsequence (y');e., of each row (+});¢, of the form

Yy = yn + 07 where h! — 0 weak™ in {1 as i — oo and [[h}|] > 4. Thus. up to ar-

bitrarily small perturbations. we may assume ;' and h7 are disjointly supported
for i # j. And doing all this by a diagonal process we can assume that (y7)n.icw
is a subarray of (x7 )y ;.. It follows easily that

“Z“iei >8) faif. o m

From Proposition4.8 we see that 1 can be an asymptotic model of a space
X with a basis without being an asymptotic model generated by a block basic
array. But this cannot happen in a boundedly complete situation:
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PROPOSITION 4.11: Let (d;)ic., be a boundedly complete basis for Y and let
X €Y be a weak* closed subspace. If {1 is an asymptotic model of X, then ¢;
is an asymptotic model generated by a basic array (x}'), e, where, for each n,
(@M)icw Is weak™® null.

In this proposition the weak* topology on Y is the natural one generated by
regarding Y as the dual space of [(d});cy], where the d}’s are the biorthogonal
functionals of the d;’s (this is, for all 4, j, dfd; = 6). Thus, d, = Y afd; = d =
> a;d; weak*® if (dy)ne, is bounded and a? — a; for each n € w.

Proof of Proposition 4.11: Let (yI")n.ico C X generate the asymptotic model
(€i)icw which is equivalent to the unit vector basis of ¢;. As in the preceding
proposition, by passing to a subarray we may assume y' = f" + z? where, for
each n, (2})ic, is weak™® null and (f")new € X. If (f")neuw\k is nOt equivalent
to the unit vector basis of #; for some k, then some block sequence of absolute
convex combinations of the f™’s is norm null. We use this (as in the proof of
Propositiond.5) to generate a new basic array of the same form where || f"|| < ¢,
for €, | 0 rapidly, and so a subarray of (z}/||2}]|)n,ic generates the unit vector
basis of ¢;. |

The asymptotic models of L, (1 < p < oo) are necessarily unconditional and
in fact every normalized unconditional basic sequence in L, is equivalent to an
asymptotic model.

PROPOSITION 4.12: Let 1 < p < oo. There exists K, < oo so that if (x;);¢,, is a
normalized K -unconditional basic sequence in L, then (2;);e., is X Kp-equivalent
to some asymptotic model of L,.

Proof: This follows easily from arguments of G. Schechtman [S74]. There exists
K, < 00 so that (x;);e,, is K Kp-equivalent to a normalized block basis (;)e. of
the Haar basis (h;);e, for L,. Furthermore, if (z;);e. is a block basis of (h;)iew
with |z;| = |y;| for all i, then (x;)ien is KX Kp-equivalent to (z;)ien. For n € w,
let (y?)icw be a normalized block basis of (h;);e,, with |yi*| = |yn| for all i. By
Lemma 4.2, some subarray of (y]')n.icw is thus a block basis array of (h;);e,. By
our above remarks and Proposition 4.1, some subarray of (y}'), ic., generates an
asymptotic model I \,-equivalent to (T1)icw- [ |

Another natural question is if X has Y as an asymptotic model and Y has
Z as an asymptotic model, does X have an asymptotic model isomorphic to Z7
If one replaces “asymptotic model” in the question with “spreading model”, the
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answer is negative (see [BM79]). In the following, we present an example that
shows the answer also to be negative in a strong way for asymptotic models.

Example 4.13: There exist reflexive Banach spaces X and Y so that Y is a
spreading model of X, ¢, is a spreading model of Y and ¢, is not isomorphic to
any asymptotic model of X.

Proof: X and Y will both be completions of cgg under certain norms which
will make the unit vector basis of ¢gp an unconditional basis for each space. We
will denote these bases by (v;}ic,, for X and {(u;};e., for Y. Both spaces will be
reflexive.

First we construct the spaces Y and X. The construction bears some similarity
with those in [MR77] and [LT77, p. 123]. To begin, let (m;),e., be an increasing
sequence of integers with mq = 1 and for any & € w: mg + -+ + mg < 2my,

Znew\{o}(l/'/mn) < 1 and (2my)?//mrs1 < 1. Let F be the subset of cgo
given as follows:

F = {f:Z(lEij/\/Eij):new, IEij| §7n.i3., n<ig < <y
JEN

and E;, N E;, = 0 whenever k # l},

where 1g, € ¢y is the indicator function,
El

lEl(’”) =

J

{ 1 ifke Eij ,
0 otherwise.
For x € ¢qq, let

/3
lz|ly := sup { ( Z(fk,il?>3> :m € w, (fi)kem C F and
k€Em
the fi’s are disjointly supported}.
where (f,, x) is the scalar product of f; and . We say E € [w]<“ is admissible if
min(E) > |E| and g € cqp is admissible if supp(g) (the support of g) is admissible.

Set G := {f|g : E is admissible and f € F} = {f € F : f is admissible}, and for
T € Cgo, let

1/3
llzllx := sup { ( Z (gk,at)"s) :m € w, (gr)kem C G and

kem

the gi’s are disjointly supported}.
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We will also write g(x) for (g.x). It is clear that (v;)je., and (u;)je. are each
suppression-1 unconditional bases for X aud Y, respectively. Because each basis
admits a lower (3 estimate on disjointly supported vectors, neither space contains
(2 's uniformly (see [Jo76]). Thus. both bases are houndedly complete.  Also,
both bases are shrinking and hence X and Y are reflexive. To see this for Y’
(the proof for X is similar) suppose (y;)ie. is a normalized block basis of (1)) je..
which is not weakly null. By the definition of the norm in Y. and passing to a
subsequence of (4;)ie,. we obtain f € F and £ > 0 with |(f.y;}] > 2 for all j.
which is clearly impossible.

The sequence (i) e, is 1-symmetric and is the spreading model of (v;)je.
{since if one moves a vector far enough to the right in cpy. then the Y norm
expressions all hecome allowable).

Let Ey < --- < Ej < --- be sets of natural munbers with |Ej| = m; and let
yj = 1g,/vm; (for j € w). Then [|y;lly > 1 and supje,, [ly;lly < oc. Indeed. for
some fixed ¢ € w. let y =1,/ \/7 First suppose f € F. and therefore, f is of
the form f =3 ( e, /\/Fij {for some disjoiut collection (E;,) C [w]< with
|E;;| < my; and n < < --+ <dpoy). We shall estimate (f, y) from above. and
thus we may assmme supp(f) C E,. Write f = f' + 2+ f3, where

L, . .

Z . \/—-—‘— if some i; =q. 3 1Eij
m, ) f — E .
eV m; 0 otherwise. < vy,

ij<a ij>q

By the properties of the sequence (mj) e, we have

| [Es; | 241, m,
y) = < A S == =1
JEG: Vi /m,, vm, v, /m,

ij<a
and

Z < m

€N \/;;_ \/Fq \/ﬁ;q-}-l

ii>q
je:u-(lE;;'/\/mij') € F and the (fi)rem are disjointly
supported with supp(fi) C E, for each k € m. As above, each f;. is of the form
fe =+ f2+ f2. Thus by the triangle inequality in (3,

(St ) " ( Z<f:..y>-")“3+ (Suzo) " (S wtw) "

kEm kEm kEm kEm

Now suppose that fi =

The first term is

(£ 5 ()"

kem jeny, 1; <q
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and since (by the earlier calculation)
|Eij| < 2m -y

Z \/'7:-;- Vi, =g

JENL. i;"(r[

the first term is

(RS mm)

m
kEm JE”A
VJ <1q

< (2111,]_1)2 my V3 o (Zmyy) L3 <1
- vm, / m, B v, '
The second term is of the form

(=)

kEmM
where >, o I < my. and therefore. it is <3, o (Ix/mg) < 1.
The third term is
(S(E ) 5 s
kem i€y \/m’j \/m(/ a kEm Jf”k m"? \/m{’
ij‘>q

zj? >q
< My _ \/}7{'(1 <1
N \/mq-f—l\/;ﬁq \/ﬁ;q—}—l

Thus. (y;) e is a seminormalized block basis of (1) e, in Y. Moreover, from
- < dpeq and (bi)ie, are

the definition of the norm, namely F. if n < iy <
[ ien bil and hence, if we pass to a subsequence

scalars. then || 3¢, biyi;|| >
of (y;)je. having a spreading model, then this spreading model is equivalent to

the unit vector basis of (.
It remains to show that (; is not isomorphic to an asymptotic model of X.

By the uniform convexity of (3 we have:

for any = > 0 there exists A < 1 such that

(%)
if v,y € By, with |[r 4+ yll¢, > 2\, then |lr —y|| <

I

We shall now fix parameters 1 > Ay > Aa > A3 > A > A5 >09.0< 57 <

T3 <2y < 1/4.85 = 1= A4 6p =1 - XAy as follows. We use (x) to obtain ),
from =4, where we require =4 (and Ay) to satisfy 1 — 204 — 224 > A5. Az and =3
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are chosen so that for any normalized basic sequence (z;)ie,, with a As-lower {;
estimate, if ||y; — x;]| < €3 for all i € w, then (y;/||yil)icw admits a As-lower ¢,
estimate. Then choose Az so that A3 +£3 > 1. Take ¢; > 0 to determine \; by
(*) so that 1 —28; —e; > Ag. If ¢ is an asymptotic model of X, then, since X is
reflexive, by the proof that ¢; is not distortable (cf. [Ja64]), we may assume that
X admits a block basis array (27), e, Which asymptotically generates (e;)icu»
where || .o bieil| > Ay Y, [bi] for all scalars (b;)ien not identically zero.

CraiM: Forn > 1 there exists IV,, € w and i,, € w so that, if i > i,,, there exists

F; C suppa} with |F;| < Ky, and ||2?|.\r || < 3.

To see this, fix n > 1. Since ||e® + €| > 2, there exists k € w so that if
i >k, then ||2% + 27|l > 2A;. Let i > k be fixed and choose disjointly supported
(9;)jem C G so that

1/3
(1) (Z(gm%) +gj<a~;-">>3> > 2.

jEM

Thus, by our choice of ¢; using (*),

(2) ”(gj(mg))j@m - (gj (41':71))j6771||€3 <ér

We reorder the g;'s and choose 7 < m so that for j € m. supp(g;)Nsupp(z?) # 0,
and for j € m\ m, supp(g;) Nsupp(z%) = 0. From (1) and the triangle inequality
in 03, (X ;e 95(27)?)/3 > 1 - 26, and from (2) and the choice of 1T we obtain
(X jemm 95 (@*)? < o1, Thus, by the triangle inequality,

1/3
(3) <Zgj(l?)3> >1—26 —e1 > Ao
jem
By admissibility restrictions for j € m, |supp(g;)] < max(supp(zf)) and thus,

since m < max(supp(x?)),

2= K,

< (max(supp(a})))

| supp(g))

jem

Let F; = Ujen(supp(g;) N supp(x})), so [Fy] < K. By (3), 1 = [la7]| >
(A3+]|27 |\ |?)}/? and so, by our choice of A3+e3 > 1, we obtain |27\ & || < €3,
which proves the claim.

Using the claim for n > 1, let y* = x¥ |\ p,/l|2] [o\F (| for i > i, and yf = 27

for i < 4,. By Proposition 4.1, we pass to a subarray asymptotically generating
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(fi)icw- By our choice of 3 and the claim, for all not identically zero scalars
(b rcicns 1 207= bafill > Xa - 3501, [bi]. Since |supp(yf')| < Ky for n > 1, by
passing to another subarray we may assume that for n > 1 there exists x" € cog
so that, if « > n and ¥ = (0,...,0,a7,...,0,a3,0,...,0,a5 .0,.. .) where the
ap’s are the non-zero coordinates of x', then 2™ = (a?,‘..,agn,0,0, ... Of
course, p, < I,,. In short, the y?’s are an identically distributed normalized
block basis of (u;)jew and (v;)jew, i.e., in both X and Y norms. This is done
by passing to a subsequence in each row, iteratively, so that the distributions
converge to that of 2™. We then diagonalize. This array still asymptotically
generates (f;);e,. Of course, we lost our Oth row, so let us relabel everything as
(@7 )n.icw asymptotically generating (f;)icw with the A4-lower £ estimates and
the fact that x? equals 2" in distribution for ¢ > n. And our old K, becomes
K,,_; in the new labeling.

From this point on we work in Y (when computing || >°;c,, bia} || for dg
large, the X and Y norms coincide). For x = (ag,...,@n-1,0, 0,...) € coo,
let. 2% := (Gr(0)- -+ Cr(n-1)-0,0,...), where 7 is a permutation of n such that
x| = - > |rm-1)|- By passing to a subsequence of the rows (the new ar-
ray still asymptotically generates {; with lower estimate A4; indeed, it generates
a subsequence of (f;);e..) we may assume that ™" — & € ¢y coordinatewise,
where r = (ag,ay,...) with |ag| > |ei| > ---. Also, since Y is reflexive, € YV
and |jz||y < 1. Choose p € w so that ||(ap, apt1,...)|ly < 45 choose M € w so
that Tim K2 < 24 (vecall that Iy is the cardinality of the support of 2°); and
further choose N > 8 KoM so that (pN)'/3 < N/8.

We next choose v, | 0 with Znéw\ {0} I < 1. For each n € w choose ¥,,.1 > 0
so that if g = 1g/\/m; is a term of some f € F with the property that |g(z)| > vn
for some ||z|ly < 1 with |supp(z)| < Iy, then |g(y)] < yn41 whenever |jy|ly <1
and ||yllec < Fn+1. By passing to a subsequence of the rows again and relabeling

and not changing the first row of 2’s we may assume that 2"*|, = z|, for all
positive n (this actually introduces a slight error which we shall ignore in that it
is insignificant to what follows) and

(4) "= -T'lp + ;17|[P1P,1] + -Tn*|(pn,1\},]

where |||, k. jllec < An» the || - |lo being calculated relative to the (u;)-
) . . N
coordinates, where p < p; < K1 < py < Ny < p3---. Now ||z{, + ¥ Yoner T >
24, provided iy < iy < --+ < iy are large enough. We fix these elements and
use (4) to write each 2 = af (1) + 2} (2) + «f (3), where the three terms are
disjointly supported and each has, respectively, the same distribution as the three
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terms in (4), thus «} (2)* = 'rlfp-ml' Choose disjointly supported (gi)kem € F
with

N 3\ /3
1
() ( > ok <.l'?0 + > .v}’n> ) > 2X.

kEm n=1
It follows that
1/3
( Z g,\.(.l',?o)d> > 1 — 24y4.
kem
Write gx = 3¢, (LE, , [Vmge) A as in the definition of F. We shall call 1g. y /Vm; g

a term of g,. By reorderlng the g;'s we may assume for some m < m that 1f
k < m, then some term 1g/,/m; of g; satisfies

1
)| 2

In particular, this forces m < Ky and j < M, and so ny < M for k < m. If

I\ 0

k € m \ 1, then for each term 1g/,/m; of g, we have

0] > L
\/W k Iy

and so. since at most g such terms could be non-zero on 9

1/3 -
(6) ( > gk(.r?o)3> < Y gl < = Ko = =4

kem\m kem\m 0
From (*), (5) and our choice of A4,

(5 (s 50))) " <

kEM

~

=

and so, from (6) and the triangle inequality in (3,

(7) ( > ( i zvjl>3> v < 224

kem\m n=1
Thus, by (7) and (5),
L N 3\ 1/3
(8) ( gk(—ﬁzll‘f&) ) >1—284 — 254 > As.
kem n=1
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Now m < Ky and each ny < M. So we have amougst (gr)rem at most Ko/l
terms of the form 1g/y/m. We shall show that

( %" G 2 (1)>3) " ( 2 (% S (2)>3> )

hEM n=t rEMm n={
1 N 3\ 1/3
A(Ta(zram)) o

kem n=1
which will contradict (8). The second term is easiest to estimate; it is

We next estimate the third term in (9). If for a term 1g/,/m; of some gi.. k € m
we have

ARG

J

then .
‘ ]i‘(,ril(:})) <y forl#n
VI

Thus

and therefore the third term in (9) is

2o M
I\OM ( +Z ,J> ‘0 .

Finally. + Z,?: 1 27 (1) consists of the vector |, repeated N times on disjoint
blocks. Hence, its norm is less than or equal to twice the norm of the vector in
Y which consists of Tl repeated pN timies. Since ) e\ {0}(1 /M) < 1, this is
at most 2(pN)/3/N < 1/8. Thus. the left hand side of (9) is

1 WM 1 1 1 1

<< te <t -t-==<X
Sgtat vy <gtitsT3

and we have a contradiction. which completes the proof of Example 4.13. ]

In summary, asymptotic models generalize spreading models. Certain positive
theorems that one would like to have for spreading models are just not true. This
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was one motivation behind the development of asymptotic structures {X}, in
[MMT95]. In that setting, the theorems are more complete, yet a sacrifice is made
in that certain infinite dimensional structural properties are lost. Asymptotic
models provide a somewhat fuller theory than spreading models, although some
of the same deficiencies remain. They also provide a context in which some of the
long outstanding problems in spreading models may prove tractable in this new
setting (see Section 6.2 below for some of these problems). We believe that the
stronger type of convergence one has in strong asymptotic models, as opposed
to the convergence of arrays, should enter into the solution of some of these
problems.

5. Asymptotic models under renormings

In this section we extend some of the results of [0S98;] to the settings of asymp-
totic models. Information about the spreading models of a space X does not
usually yield information about the subspace structure of X. For example, every
X C T (Tsirelson’s space) has a spreading model 1-equivalent to the unit vector
basis of ¢, but T does not contain an isomorph of ; [0S98;]. But something can
be said if one strengthens the hypothesis to include all equivalent norms as the
following theorem of Th. Schlumprecht and the second named author illustrates.

THEOREM 5.1: [0S98,] For every X there exists an equivalent norm || - || on X,
so that we have: If (X,] - ||) admits a spreading model (ey)ne,, satisfying
(a) (en)new Is I-equivalent to the unit vector basis of co (or even just |leg+e1 || =
1, where (e, )ney is generated by a weakly null sequence), then X contains
an isomorph of ¢g;
(b) (en)new is I-equivalent to the unit vector basis of {1 (or even just |lepte, ]| =
2), then X contains an isomorph of {1;
{(¢) (en)new is such that || Ziew aze;|| = Ziew a; for all (a;) € coo with a; > 0
for i € w (or even just ||eq + e1|| = 2), then X is not reflexive.

We shall develop an asymptotic model version of each part. Part of our con-
struction will mirror that in [0S98,], but we need some new tricks as well. We
begin by recalling the construction of the equivalent norm || - || from [0S985].

For ¢ € X and x € X define ||z|. == |cllel| + 2| + {lcllz|| — 2|}, where || - || is
the original norm on X. Then ||x|. is an equivalent norm on X and in fact, for
all v € X, 2||x|] < ||zlle < 2(1 + |Je/)|=|]. Let C be a countable dense set in X

and for ¢ € C choose p. > 0 so that Y~ pc(1+]c]) < co. Define for » € X,

(10) fol == D pellfe.

ce(’
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This is an equivalent norm on X. We call || - || the asymptotic norm generated
by || - ||- We may assume ||zl} > |||l

THEOREM 5.2: X contains an isomorph of cq if there exists a weakly null basic
array (x1)n.icw C X generating—in (X, ||-||)—an asymptotic model (e;);¢,, which

is 1-equivalent to the unit vector basis of ¢g.

LEMMA 5.3: Let (m)mew and (Yn)new be || - | normalized weakly null sequences
in X with limy, 0o UMy oo |@m + ynll = 1. Then there exist integers k(0) <
k(1) < --- so that setting a := limy, 00 ||T(m) || and &7, = Xim)/ 1Tkem)|, for all
y € X we have

. . p s ! __1/ _ . ,[
(11) Jim T {ly + @ + a7 el = Tmfly + 2,
Proof: By Ramsey’s Theorem there exist k£(0) < k(1) < ---so that forally € X

and a, 3 € R,

lim  lim ly + @@ (m) + BYr(n) || exists.
m—00 N—00

To simplify notation we write (¥m)mew and (Yn)new for (Ti(m))mew and
(Uk(n))new and thus a = liny, o0 |7 ]]. Now

1= lim lim |lzm +ull = ml}_l-)lrl)o nli_l)lgo Z Pellzm + ynlle

m—00 N—00

ce(’
= lim ZpCH:vaC.
m—o0
ceC
Thus
(12) 1= pr( lim lm |Jam + ynlle) = ch( Hm ||emle).
m—ro0 N—00 m—0o0
ceC ceC

Since ¥, — 0 weakly, Hmy—oe iMoo lTm + Unlle > Mmoo lom e for all
¢ € C. From this and (12) we get

77li_1)n li_1>n m + ynlle
(13) m oon o)

= lim |jay,|le for all ¢ € X (since C is dense).
m—o

Letting ¢ = 0, this yields

Hm  Hm |, + y|] = .
mM—00 N—00

Thus, for all y € X,

m  lim [jey + 2m + yoll + || — @y + 2o + ¥2|]

(14) MO0 N—+20

ey + xml| + || — ey + vm]|]-

lim
m—0oc
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Again, since (¥, )new is weakly null,
lim |jay + vy + yull 2 ey + 2| and
nN—>2C

m | —ay+an,+ull 2l —ay+ e, formew.
n—a

Thus. by (14). for all y € X we have

lim 11111 lay 4+ @ +ypll = Hm ey + 20l
m—ocn— m—ox
which completes the proof. ]

Note that it follows from Lemma 5.3 that if L, o iy, oo o, £yl = L.
then for all y € X we can obtain

lim lim ||y ), £a 'yl = 11111 HJil

771”
nN=32 N—ro

for all choices of sign (keeping the sign of ./, the same on both sides of (15)).

Proof of Theorem 5.2: By passing to a subarray of (27),.;e, We may assume
that for each n € w we have liny_,o |[27]] = @, (for some «,). Let =, | 0 with
Y newSn < 00. By passing to a subsequence of the rows we may assume that
for all n, a,, = @ > 0. |1/a, — 1/a|l < £,/3 and @, > a/2. In addition. we may
assume that for all y€ X, a.d € R and i, j € w,

li li + Bt
ml—l}:lp nll)n ||lj+(11m ! 'n”

exists and. moreover, by Lemma 5.3 (actually (15)) we may assume that for
y € X and p,q € w with p < ¢ we have

l.q
lim lim H J:i: :i:

i—=oc j—o0 ap ap

= lim H/:t

=00

ap
Hence, from the triangle inequality using |1/a — 1/a,| < &,/3 we get

oo
(16) lim lim “yi Yy —J—” < lim 'y-{- “ +=
a« o«

i—=00 jooo i—00

By passing to another subarray and setting x; = x!/a for i € w we may assume
that for all m € w and y € 2mBy,

iem?
(17) ”y tay, & -rnz+1” < ||U Ty, “ + 2ep-

This is accomplished using (16). If i is large enough and 7 < j, then
0 !

el <lelen
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This fixes i and g = ¥ /a (under relabeling) and then we inerease j large enough
so that for j <k and y € 2B,.

b2
patlat
a

o+ oo

This fixes j and »y = zﬁ /a (undler relabeling) and so on.
We claim that
sup {

which will yield the theorem ((;)ic., Is then equivalent to the nnit vector basis

Z i.z';“ : all choices of & } < .
I€m

of ¢). Indeed. from (16) we get

Sanf | ¥ o]+
iem iem—1
S e S ”.l'()” + Z 25111 < xX. i

mew

Remark 5.4 Tu the proof of Theorent 5.2 we only used

lim luu floh, £ 28] =1
m—o0 n—r
for all p < ¢. In other words. Jle, £ ¢,]] = 1 for p # ¢. In the case of spreading

models (Theorem 5.1(a)) one only needs fle, + ¢,)| = 1 for p # ¢. We do not
know if this is sufficient to obtain ¢q inside X for asymptotic models.

The proof of Theorein 5.2 was thie most similar to the spreading niodel analogue
of the three results we preseut in this section. Owr next proof is more difficult.

THEOREM 5.5: For every separable infinite dimensional Banach space X, there
exists an equivalent norm ||| on X with the following property. If there exist ||-§|-
normalized basic sequences (1, mew and (Y )new With liny, . liny, oo flvm +
Ynll = 2. then X is not reflexive.

COROLLARY 5.6: X is reflexive if and only if there evi‘;ts* an equivalent norm || - ||

on X such that if (e, )y e, is an asymptotic model of (X ). then fleg+e1] < 2.

Proof of Theorem 5.5: We first construct the norm ||| - | on X. We begin by
assuming that X = (rg) 4+oc ¥ where Y™ is a subspace of a Banach space with a
bimonotone normalized basis (d;) and we let )) - (( be the inherited norm on Y.
We assume the norm || - || on X is given as follows. If v = arg+y € X with
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a € Rand y €7, then [j2f| = max(la|, Jy(+ e, [y(D)277) if y = Y e, (i) di-
We have the following:
(18) Let (2m)mew and (Yn)neo be weakly null

|| - || normalized sequences in X.

1
Leta+ﬁ=1,a,ﬂ>03nda7é§.

1 1
Then lim lim |z + 7%m + ynH =1 while
M—00 N—00

. 1 .
lim ”011’0 + -T'm“ + lim ”ﬂxO + _yn”
m—oo 2 n—00 2

= max (a, —;:) + max (B, %) = % + max(a, 3) > 1.

(19) Let y € Y,y # 0 and let (2,)mew be a
| - ||-normalized weakly null sequence in X.
Then, presuming the limit exists,
. —3 .
Tl zall 2 14 Y27y > 1
1€w
Let || - || be the asymptotic norm on X generated by || - || (see (10) above), and
let || - | be the equivalent asymptotic norm on X generated by || - . 1

Before proceeding we present a lemma. The lemma is valid in any (X, || - ]),
not just in our space above.

LEMMA 5.7: Let || - | be the equivalent asymptotic norm on (X, || - ||) generated
by |||l as in (10). Let (&p)mew and (yn)new be || - ||-normalized sequences in X.
(a) If limy,—y o0 My 00 |2 + Ynll = 2. then there exist integers k(0) < k(1) <
- s0 that setting x,, = Zpm)/||Tkem)ll and ¥, = Yrn)/||Ur)ll, then for
ally € Y and B3y, 82 > 0 (not both 0) we have
(20)  lim  Tim Hy+51fc + Baynl

m—00 N—r

= lim H y =+ By |-

m—o0

y+/31:ﬂ'mH + lim ||
n—oo

2
B + B B+ B9

(b) If limyy, o0 limy s o0 J2m £ yull = 2, then there exist integers k(0) < k(1) <
- 50 that setting x,,, = Tr(m)/||Trem)ll and ¥ = Yy /1Yr)ll, then for
ally € X, 1,52 € R (not both 0) we have

lim lim |ly + Biz;, + B2u), |l

m-—00 N—00
|31

(21) = lim

|32]
m—yo0 H 1B1] + | B2

+ Bragy|| + Jim |
v+ ||/31|+ 13

+ lim
n—o0

|y+&%~
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Proof: Again by Ramsey’s Theorem we can find k(0) < k(1) < --- so that
relabeling Ty(m) = Tm and Ye(n) = Yn, Mmoo limy o0 ||y + am + Byn || exists
forall y € X and o, 3 € R Let a = limy, 00 ||Zm|ls b = limy, o0 [|yn]| and let
x, = &m/a, Yy, = yn/b. We will prove the conclusion of the lemma for these
sequences which will yield the lemma.

(a) We first suppose that 31 + 2 = 1. Set B1 = Bi/a, B2 = Bo/b. From our
hypothesis,

lim 11111 1812, + Baynll = 1 + Ba.

m—oo0 n—
From the definition of || - || and the triangle inequality in each || - ||. we obtain,
for c € C,
(22) lim hm 1B12m + Boynlle = 11111 lBramlle + hm | Botnle-
m—o0 n—

By the density of C' in X this holds for all c € X.
Setting ¢ = 0 in (22) yields

(23) lim 11111 Brar, + Bawnll = B+ B2 = 1.

m—o0 7

From (22), using (23), for all c € X,

(24) lim lim [[le+ Biay, + Bayp )l + lle = (Bizy, + B2y}

nM-—00 N-00

= lim [[|3ic+ Bzl +11Bre = Brar ]
+ lim {1B2c + Bagi || + [132c = Bay -

From (24) and the triangle inequality we obtain (20) in the case 8; + 85 = 1.
To get the general case from this we note that for y € X, 51, 32 € R (not both 0)
we have

lim lim “ A ;n i
m—oon—ooll B + o /31 + 32 B+ B2

yn

: Y B ,

- 1 H r
s B + 3y (31 + /32> + Bi+ Ba m
Y ) B2,

+ Hlim + - Yn
81+ B2

n—r00 H B +2;32 (/31 + 32

and (20) follows by multiplying by 8; + fa.
(b) We continue the argument from (a). As in that case we may assume that
[Bt] + |B2]| = 1. The case 3;, 32 < 0 is covered by (a) using

lim lim |ly+ Bl + Beylll = lim lim || —y — Szl — Bl |l-

n—oC n—oC M-—3+00 N—00
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Similarly. the only case left to consider is 3; > 0 and 3, < 0. We prefer to take
31,35 > 0. 3, + 2 = 1 and work with *3.07
the hypothesis for ¢ € X,

1y — 3207, As in (a). we obtain from

lim 11111 N = auplle = Hm 30200, |- + lim 13205 1]
m-—oC n—r2¢

m—oc n—r

Thus. for y € X we get
lim lim [”Ij + 31 T — "}ZUZ)” + ”Ij - (‘jl'rin - 3-)1/:1)“]

m—xX n—oC

= mlg)l:l)e[“’jly + '31'1‘:71 ” + ”3“/ - “}J‘I‘:n ”]
+ T (1329 = Bay, Il + 132y + B 1)
Again from the triangle inequality we obtain (21) in this case. n

We return to the proof of Theorem 5.5. Suppose that () mew and (¥, hnew
are || - || normalized basic sequences in X with

lim hlll M + yall = 2.

MFOC N—
Assume towards a contradiction that X is reflexive. Then (), )mew and (¥ hnew
are hoth weakly null. We may asswme that

lim  lim |ly + axm + 3y,

m-—roC N—oC
exists for all y € X. a,3 € R (and for all of the norms we have constructed). By
Lemma 5.7 we may also assmue that setting ., = v, /el and ), = yo /llyall.
for y € X aud a./3 > 0 (not both 0) we have

lim lim fly + ax;, + 3y, |

m—roc 1=

= lim m

m—roX

y+ar, m + lim

n-—oC

e

B 2; pellielly + o, + Byull +y + o, + 3y, |
ceC

+llelly + oy + Byl — (y + o, + /3%'1 )i

= lim E p,_,[
m-—»00
ceC

+Hﬂaiﬁy+m%ﬂ—(niﬂy+mxﬂﬁ

. 3
i 3 e et i+ 5

y+ 3y, H'

a+73 a+ 3

Thus,

e + oy, || +

+ 3y+01m“

ara’t M’H

-Gz o)l

3
[+
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From this and the triangle inequality we have for allc€ X,y € X and o, 3> 0
(not both 0) that

(25) Jg;ggﬂdw+aﬂn+ﬁ%ﬂ+y+adn+6%H
i s o+ o
+ i e g+, afwﬁyn
Setting ¢ = y = 0 in (25) yields
(26) lim  lim lexl, + By, |l = aa + Bb,

m—o0 n—r
where a = lim,, ||a,]| and b = lim,, ||y, ||. Let xl, = . /||x..|| and yI, = v, /|ly5]l-
Then
lim lim |jea), + Bynll = a+ 3.

m—oo Nn—o0

Letting y = 0 and replacing ¢ by ¢/(a + j3) in (25), using (27), we have

(28) lim 11111 llet+axi,+Byn|l = lim H

”
ctax,, '
m—o0o n— m—00 !

+ lim |

=00

a+ B a+t B

We claim that ¢ = b. Indeed, let us assume a # b. By (27) we get

limy, o0 im0 [| 227, + 347/]l = 1 and further we have

1 1 1
Jim tim o + 520, + Sulll =

see (18). But from (25), taking y = 2 and ¢ = 0, we get

lim lim | £ a4 oyl = tm H +1“’+1’
i, Jan flvo+ 3 gun] = Y Jim o + g0 + 550k
L 1
o 5 i 0
=i ;+§J°+z%l+lmlH L0 T oo

>1 (for @ # b) using (18).

From (25) we obtain for all ¢,y € X and o, > 0 (not both 0), by replacing
o, 3 by a/a and B/a since 8/b = B/a,

(29) mh_l}l hm Hcl|y+a1'm + Byl +y + o’ + Byl
th—)n(lx, 3!/‘*'04.1 +/3J+Otl
I}

= lim [ llawy“ v

a+/
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Next, we wish to show that (2] )mew and (¥ )ne. generate the same type over
YViie,ifyeY,d :=1limy o ||y + 2| and v 1= limy, o0 ||y + y/2 ||, then & =
Clearly, 6 =y =1ify=0,s0assume y # O and 6§ # 7. Let a4+ 3 = 1. Now
from (28) we get

lim lim ||y + aay, + B8y, = hm ||ay+ar ||+ hm 1By + Byl

mM—00 1—00

= ad + 5y.

Thus, from (29) we get for c€ X, a+ 3 =1and o, 3 > 0,

(30) lim hm lle(ad + Bv) +y + axll, + Bylll

m—=ron

lnn (ad)e + ay + ax), ||+ lnn 1(By)e + By + By |l

Let o = 3 = % and

om -1 y = —2y
s
i+g 0tn
Using this in (30), from (27) we have
Jin tin et + 5ot = 1
(31) = lim “(—— ——) + .I‘ + Hm H(———) -{-l "
e300 (5+’7y m Mool S+ 2yn

and since ¢ # v, both coefficients of y € Y on the right side of (31) are nonzero.
Therefore, by (19), the right side exceeds 1, a contradiction.

It follows that limy, o limy, o0 ||20, + 20 || = 2 and, moreover, (2)),e. can be
substituted for (y//)ne., in our above equations. So we are in the same situation as
the proof of Theorem 4.1(c) in [0S98;} and it follows that for some subsequence

(x;;i)iewv
Za x if (ai)iew C [0,00), Zai =1.

S 1€w

Hence, (x;{i),iew is not weakly null and X is not reflexive, which completes the
proof of Theorem 5.5. |

THEOREM 5.8: Let X have a basis (b;);e.,. There exists an equivalent norm
-l on X so that if (X,||-||) admits || - §| normalized block bases of (b;)iew,
say (Tm)mew and (Yn)new, satisfying limy, oo imy o0 [|2m £ ynl] = 2, then X
contains an isomorph of f;.
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COROLLARY 5.9: If X has a basis and does not contain an isomorph of €1, then
X can be given an equivalent norm so that if (e, )nc. Is any asymptotic model
generated by a block basic array. then (e, )}, c. Is not l-equivalent to the unit
vector basis of €;.

Proof of Theorem 5.8: The norm ||| - || is constructed as in the proof of Theo-
rem 5.5 where we begin with X' = (bo) Foc [(b:)]icu {0} and (b;)ic. is bimonotone.
Everything we did in the proof of Theorem 5.5 remains valid and, in addition, we

have the use of (21). It follows that not ouly do {2/ )meo and (y)) e, generate

m
the same type over Y, but so do (a7 )mey and (=y))ne, and thus, as in the
case of Theorem 5.5. the proof reduces to the situation in [0S98,]. Hence, some

subsequence of (27 Yme., is an €4 basis. |

The arguments easily generalize to the case where X is a subspace of a space
with a basis (b)) mew, and (€, )ne.w is generated by an array (a7, iew, where for
all n,m:

; Ny
lim by, (27) = 0.

A m
L3> 00

6. Odds and ends

In this section we first consider some stronger versions of convergence one might
hope for but, as we shall see, one cannot always achieve. We also raise a number
of open questions.

6.1. CouLb WE GET MORE? There are very many possible strengthenings of
asymptotic models that one could hope for. One such question is as follows:

Suppose we are given a normalized basic sequence (y;):c., and (a);e,,. Does
there exist a subsequence (2;);e. Of (¥i)ico With the following property: for all
n€w, (bilien €[-1,1]" and e > 0, thereisan N €w so that f N < jg < -+ <
Jn—1. N < ko < -+ < kn_y are integers and @ € (w)*, then

Indeed, this is true if for each i € w, a’ is finitely supported, for one can then
take (#;)ic, to be a subsequence of (y;);c., generating a spreading model (€;);¢. -
The limit will exists in the above sense (it will be just || >, b; fill where (fi)icu
is the normalized block basis of (€;);c., determined by the a’’s).

<e?

> b(QUi).a')

i€n

Z bix(Q(k;),a)

en

In general, however, this is false, even if (y;);c. is weakly null and a’ = a for
all i € w and some a. Indeed (cf. [LT77, p. 123]), one can embed ¢, & €5 (p # 2)
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into a space Y with a normalized symmetric basis (y;)ic. in such a way that the
unit vector basis of £, & {5 is equivalent to a normalized block basis of the form
(y(P(i),a))ic, where |P(i)] — oo and a = (1,1,1,...). Thus, for appropriate
Q1,Q2 € (W)Y with |Q1(7)],1Q2(1)] — oo, every subsequence (2;)ic. Of (¥i)icw
contains block bases (x(Q1(%),a));c and (x(Q2(i),a))ic.. which are equivalent
to the unit vector basis of £, and {3, respectively.

On the other hand, there are of course variations of our construction of asymp-
totic models in Theorem 4.3 that do succeed. For example, given a basic array
(@7 )n.icw, One might stabilize

k(i,P) k(i P)
Db Vg
i€En

where the row now depends upon i and P € (w)*. In this more general setting,
one has that (e;)ien € {Xn} iff there exists a block basic array (z}')niew and
k(i, P), ai,(i)’s, so that the above expression converges (as in Theorem 4.3) to
12 sen bicil-

Indeed, suppose for example that the tree Tp = {a (mo my) 2 0 < mo < my}
converges to (e1,e2) as in (4.7.3). Let af = (), ! = 30, for i > 0, 27 = (1
for i > 1, and so on. (Notice that there is no need to define the ﬁrst part
of each row.) Set k(0,P) := 0 and k(1,P) := j + 1 if min P(0) = j, and let
afD(,l.) = (1,0,0,...).

One could also relax the conditions defining a basic array (z') by deleting the
requirement that the rows be A-basic. This would yield many more “asymptotic
models.” For example, every normalized basic sequence (x;) in X would be an
“asymptotic model” of X; take (z}) = (z;) for all n. Proposition 4.5 would also

hold in this relaxed setting.
6.2. OPEN PROBLEMS.

Problem 6.1: X is asymptotic ¢, (respectively, asymptotic co) if there exists
K so that for all (€;)icn € {X}n, (€i)ien i K-equivalent to the unit vector basis of
€7 (respectively, €3) (see [MMT95]). Assume that there exists K and 1 < p < oc
so that if (e;);e, is an asymptotic model of X, then (e;);e. s IN-equivalent to
the unit vector basis of £, (co, if p = 00). Does X contain an asymptotic {, (or
¢o) subspace? The analogous problem for spreading models is also open.

Problem 6.2: Suppose X has a basis and that there is a unique, in the isometric
sense, asymptotic model for all normalized block basic arrays. In this case, even
if one replaces asymptotic model by spreading model, it follows from Krivine’s
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Theorem [Kr76] that this unique asymptotic model is l-equivalent to the unit
vector basis of ¢ or €, for some 1 < p < o0o. Must X contain an isomorphic copy
of this space? The analogous problem for spreading models is known to be true
for the case of ¢ and ¢; (see [0S98;]). Also the asymptotic structure version of
the question is true: if |{X}s| = 1, then X contains an isomorphic copy of ¢g or
(p (see [MMT95]).

Problem 6.3: Can one stabilize the asymptotic models of a space X ? Precisely,
does there exist a basic sequence (x;);e,, in X so that for all block bases (¥;)iew
of (2;)iew, if (€:)iew is an asymptotic model of some normalized block basic ar-
ray of (x;)sew, then (€;);e, is equivalent to an asymptotic model of a normalized
block basic array of (y;)ic.? We do not even know if there is some basic sequence
(2;)iew and an asymptotic model (e;);e of (2;)icw such that every block basis
(¥i)iew of [(2:)icw] admits an asymptotic model equivalent to (e;);e. The anal-
ogous questions for spreading models are open. It is known that one can stabilize
the asymptotic structures {X}, for all n € w by passing to a block basis (see
[MMT95]).

Problem 6.4: Assume that in X, every asymptotic model (e;);e, of any nor-
malized basic block sequence is 1-unconditional (this is || Y fazeif| = 1| D azeil]).
Does X contain an unconditional basic sequence? Does X contain an asymp-
totically unconditional subspace? (i.e., a basic sequence (x;);e., so that for
some ' < oc and for all n € w, every block basis (y;)ien Of (2i)icw\n is K-
unconditional).

Problem 6.5: For any space X, does there exist a finite chain of asymptotic
models X = X, X1,...,X,, so that X1 is an asymptotic model of X; (for
i € n) and X, is isomorphic to cg or €, for some 1 < p < 007 The analogous
problem for spreading models is also open.

Problem 6.6: For 1 < p < 00, {, is arbitrarily distortable [0S94]: Given i > 1
there exists an equivalent norm || - || on €, so that for all X C ¢,, (X, || - ||) is not
K -isomorphic to (,,. Is this true for asymptotic models as well? Given I > 1 (or
for even some I\ > 1) does there exist an equivalent norm | - || on ¢, so that if
(€i)iew Is an asymptotic model of (€,, || - ||}, then (e;)ic., is not K-equivalent to
the unit vector basis of ,,7 The analogue for spreading models is also open.

Problem 6.7: If X has the property that every normalized bimonotone basic

sequence Is an asymptotic model of X, does X contain an isomorphic copy of
2
Co !
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